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The Dule project is an experiment in large-scale fine-grained modular pro-
gramming employing a terse notation based on an elementary categorical model.
The Dule module system remedies the known bureaucratic, debugging and main-
tenance problems of functor-based modular programming (SML, OCaml) by intro-
ducing simple modular operations with succinct notation inspired by the simplicity
of its semantic categorical model and a modularization methodology biased to-
wards program structuring, rather than code-reuse. The same categorical model
and its natural extensions induce an abstract machine based on their equational
theories and inspire novel functional core language features that sometimes com-
plement nicely the modular mechanisms and sometimes are language experiments
on their own.

The assets of the project are gathered on its homepage at http://www.
mimuw.edu.pl/~mikon/dule.html, where the formal definition of the cur-
rent version of the language as well as an experimental compiler with a body of
Dule programs can be obtained. In its current state, the definition is complete, but
some of the theoretical hypotheses it has brought out are unverified and some of
the suggested ideas for future user language and abstract machine mechanisms are
unexplored. The compiler works adequately, but it still does not bootstrap and the
lack of low-level libraries precludes practical applications. The compiler (except
the type reconstruction algorithms) and the abstract machine are a straightforward
implementation of the formal definition, so their efficiency can (and should) be
vastly improved. There is ten thousand lines of fine-grained modular Dule code,
but much more will be needed to discover all scaling problems and fine-tune the
modularization methodology, possibly changing the modular operations accord-
ingly (but not the underlying categorical model at this stage, we hope).

1 BACKGROUND

Modular programming is necessary due to the growing size, complication and the
requirement of modifiability of computer programs. The most useful approach ap-
pears to be the integration of rigorous module systems into high level programming
languages, as in Standard ML [30] or OCaml [27]. However, strictly modular pro-
gramming style, with explicitly defined modular dependencies, can be sustained
only in small programming projects written in these languages. In large projects,
managing the many layers of abstraction, introduced with the module hierarchy,
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turns out to be harder even than manual tracing of each particular dependency in
unstructured code [33]. Abstract and fine-grained modular programming is cum-
bersome, because the headers to be written are complicated and module applica-
tions often trigger global type sharing [25] errors. When a module has n param-
eters, O(n2) potential typing conflicts await at each application, making not only
creation of modules, but also their use and maintenance very costly.

Another problem is the tension between abstraction, expressiveness and ap-
plicability of a module. In simplification: the more abstract a specification of a
module result is, the easier it is to implement the module, but the harder it is to
use the module. Without specialized module system mechanisms, this global ten-
sion can only be solved by making each module excessively powerful and general.
However, the usual practical approach is to gradually sacrifice abstraction as the
program grows, whereas, especially for ensuring correctness of large programs,
the abstraction is crucial [4]. Huge collections of interdependent modules them-
selves require modularization, lest managing the modules becomes as tedious as
tending the mass of individual entities in non-modular programs. Grouping of
modules performed using the mechanism of submodules often overloads the pro-
grammer with type sharing bureaucracy or requires a violation of the abstraction
guarantees. Other solutions, some of them using external tools, are usually very
crude and incur the risk of name-space clashes or ignore abstraction.

2 DULE LANGUAGE FEATURES

Dule is a programming language and a module system with a constructive seman-
tics in an abstract categorical model. Dule features mechanisms inspired by cat-
egory theory, enabling fine-grained modularization without prohibitive program-
ming overhead. Our categorical model is simple and general, admitting many vari-
ants and extensions, such as data types expressible as adjunctions, (co)inductive
constructions and mutually dependent modules.

The abstract nature of our mathematical model allows us to prove fundamental
properties of programming notions, such as module grouping with sharing require-
ments or a generalized mapping combinator [12]. On the other hand, our model is
linked to program execution via combinator reduction system [9] based on equa-
tional axiomatization of the semantic model. The compiler of Dule, after type
and specification reconstruction, computes the semantics of modular programs in
the categorical model and verifies its type-correctness, almost literally following
formal semantic definitions. Programs written in Dule compile to the language
of our basic categorical model and yield the expected results through the imple-
mented combinator reduction system. We find fascinating the immediate practical
influence our theoretical results provide in this framework and the impact of im-
plementation and experiments on the theoretical constructions.

Dule is an an experimental language with an unusual semantics and, accord-
ingly, alien syntax. Since we cannot here define the semantics and could hardly



even fit a basic syntax description, we refrain from citing any Dule code examples.
Instead we list the more interesting language features and refer the reader to the
long informal tutorial of Dule available from its homepage that accompanies the
Dule formal definition.

2.1 Module language features

• module composition with both transparent and non-transparent versions (the
latter is the categorical composition from the semantic model)

• various module grouping mechanisms (including module categorical product
operations)

• no sharing equations (nor “with” clauses nor type abbreviations); default
sharing by names

• no substructures (submodules)

• pseudo-higher-order notation for module specifications (flattened, because
no higher-order modules, but type dependencies on parameters remain)

• recursive specifications (flattened in a more complex way)

• (co)inductive modules (mutually dependent modules [8] defined using in-
ductive types instead of recursive types)

• default implicit module composition

• specifications of transparent functor applications [26] are expressible (actu-
ally all specifications of module operations are expressible)

• compositional semantics ensures separate compilation

• no references to environments in the semantics ensures the types from
module parameters are abstract; on the other hand the abstraction can be
sidestepped in a controlled way and limited scope, if necessary

2.2 Core language features

• statically and strictly typed applicative language

• categorical composition (explicit substitution) available to the user; ex-
presses, e.g., record field access

• sum types [11] separate from inductive types [18]

• both structured recursion (inductive and coinductive) and general recursion
operations



• general mapping combinator precluding principal typing property

• no polymorphism nor any parameterization by types at the core language
level

• no dependencies between declared core language level entities (all depen-
dencies are expressed through modules)

2.3 Semantic model features

• elementary notion of 2-category [22] with products as the categorical model
of the minimal core language

• Simple Category of Modules (SCM) constructed from the model of the core
language; Dule modules denote SCM morphisms, signatures denote SCM
objects, module composition is SCM composition and categorical domain
lists module parameters

• in effect, our module system has set-theoretic models [31] and its con-
struction is independent of the core language; in particular, it does not
require function types nor second-order polymorphism [2] (nor dependent
types [32])

• SCM is cartesian and has enough limits to model type sharing; the proof is
constructive and so provides implementation of related module operations

• typed combinator reduction based on equational theory of the 2-categories
provides computational meaning to modules via the core language

3 FUTURE WORK

By basing our module system on an elementary categorical model and aiming its
semantics at expressing dependencies rather than enabling code-reuse [14], we
have overcome what we perceive the main obstacles to practical modular pro-
gramming. The operations available in our module system provide for modular
programming style with no mandatory module headers, no explicit module appli-
cations and no hard to localize module errors. The model of our module system
facilitates viewing the same module with different levels of abstraction. A new
methodology resulting from our study of inductive types grants precise control
over the concreteness of module interfaces. The grouping of modules can be done
is several powerful and specialized ways, without verbose notation and without
sacrificing abstraction.

The Dule abstract model and formal semantics allows us to state many interest-
ing questions, many of which are still unanswered. Numerous programming lan-
guage improvements and extensions will surely follow. In the subsequent sections
we signal a few questions, problems and tasks we would like to see undertaken in



the immediate future. We are aware some of them are hard to understand out of
the context of the formal language definition, but we hope they can still convey an
impression of the future directions of the project.

3.1 Theory

Our elementary categorical model of the core language, on which the SCM is
based, is extended with data types expressible as adjunctions, with (co)inductive
constructions and with functors of mixed variance; in particular, with exponents
fully parameterized by types. It would be interesting to make a detailed compari-
son of our construction enabling functors of mixed variance with other approaches
known from literature [15] and further explore the properties of this notion.

Our module system features no higher-order modules (and even if it had them,
the first-order behavior would be the default, to maintain succinct notation). We
conjecture that SCM, our category of modules, has no exponent, even if its core
language categorical model has all exponents and even if the definition of signa-
tures and modules is substantially refined. It would be interesting to prove this
conjecture (after stating it precisely), as well as several other conjectures related
to the semantics. Yet, perhaps it is possible to add higher-order functors after all,
not into the SCM, but at the outer layer of semantics? Or maybe some advanced
external tools for managing libraries for code reuse — a library database and semi-
automated code-adjusting engine [1] — would be a better investment of effort?

To increase the usefulness of the general mapping combinator, we have to ex-
periment with extending its rewriting rules for the case of function types [23]. The
general categorical model is already in place, just as all the necessary syntax, other
rewriting rules and an analysis of rewriting of general multiplication by a functor.
We would suggest that the rules are proposed first for strictly positive types, then
for types with only positive occurrences of type variables and then for simple cases
of mixed variance.

We expect there is a universal categorical characterization of the mapping com-
binator, similar, though much more general (meta-polytypic), as for the other com-
binators of our categorical model. Currently, the definition is by cases on all other
combinators, and so it is complete only for reachable models. We do not expect
the characterization to be used as a rewrite rule, but it would be very unfortunate if
all such characterizations proved to be completely external to our formalism. If a
characterization can be expressed in the language of our categories, it would aid in
verification and systemization of the mapping combinator equations and rules, just
as our general framework of adjunctions does for other combinators.

One of most interesting future extensions to our module language, the struc-
tured recursion over types produced by the (co)inductive module construction ne-
cessitates additional theoretical work. Both the programming methodology em-
ploying such recursion and the implementation issues seem to be very promising
topics of research, but first we have to overcome some problems with extending
the core language rewriting to basic operations typed with complex kinds.



3.2 Pragmatics

The Dule language needs a lot of additional case studies, especially concerning
its module system. For serious large-scale experiments, a serious set of libraries
should be designed, which themselves will be substantial case studies of the Dule
modular programming style. We should explore and identify all modularization
methodologies favored by our module system and analyze the impact of Dule mod-
ularization style on the core language programming.

After a form of formal specifications is chosen for the module system, the cat-
egorical model should be extended accordingly and methodologies studied once
again. The specification specialization operation of our module system, suggests
that the programming language code will itself be a part of the logic used for
specifying modules (so that some specialized specifications could be expressed
as base specifications with axioms containing code, similar to the axioms of Ex-
tended ML [24]).

We hope the ideas underlying our module system can be applied to improve
other systems, in particular the OCaml module system. However, using the original
Dule module system to structure OCaml programs would require an extension to
the OCaml core language itself, even after the recent addition of (almost) arbitrary
fixpoints to OCaml.

The notion dual to the exponent, the coexponent [13], could be used to model
co-variables or exceptions shared among all values in a module. Both rewriting
of coexponent and the pragmatics of co-variables would be an original topic of
research. One may also check if any other adjunction expressible in our formalism
is interesting from the programming point of view, or if parameterization of any
other adjunction than the exponent makes sense.

We would like to improve pattern matching in Dule. In particular we would
also like to implement a “three dots” notation for records and this extension should
be doable at the type reconstruction level. We wonder how Haskell monads would
fit into our categorical framework, in particular when used according to the method-
ology of merging monads and folds [29]. With monads, the Haskell list compre-
hensions generalized to other datatypes could possibly also be added.

3.3 Implementation

The semantics of Dule is simple and constructive enough that the design of a Dule
compiler straightforwardly implementing the semantics was possible. Main parts
of the compiler have also been rewritten in an extremely modular and yet concise
manner in Dule itself. However, the Dule version of the compiler lacks most
boring, basic tools and technical components, and is not planned to bootstrap in the
near future. The example programs currently can be type-checked, compiled and
executed only in the OCaml version of the Dule compiler. To help in identifying
programmer’s (or compiler’s) errors, some rudimentary error reporting facilities



are implemented, but many more improvements, programming tools and manuals
are needed to make programming in Dule comfortable.

To enable efficient recompilation, Dule would require a version of the “make”
utility that is not tied to files but recompiles only those of the many small modules
contained in a file that are changed. The implementation should also take advantage
of other aspects of separate compilation in Dule, such as the possibility to salvage
compiled code of all unchanged modules of a set of mutually dependent modules.
We would also like to find a way to provide low-level libraries, or even arbitrary
C libraries (or OCaml libraries, for a start) as a fake compiled code with a Dule-
expressible specification. To enable bootstrapping of the Dule compiler written in
Dule we will also need to interface a parser generator (e.g., ocamlyacc) to Dule.

We should improve readability of compiler reports about typing errors and effi-
ciency of type-checking, compilation and execution. In particular, the execution of
code containing arbitrary fixpoints should be improved [21]. Generally, we would
like to experiment some more with the evaluation mechanism in our programming
language, taking ideas from other approaches. Staying with our conventional com-
binator reduction, we can modify reduction rules and, for a fixed set of rules, we
can try to guess which evaluation strategy is the best. Our set of rewriting rules ad-
mits many more strategies than the standard eager/lazy options of λ-calculus. As a
source for additional reduction rules, we can consider the portions of the developed
equational theories that are not yet used, especially the equalities of exponents, or
investigate the additional equalities of the theories of initial models. Currently,
despite many attempts and even hash-consing of generated code, we find a gen-
eralization of the conventional weak head normal form reduction restriction to be
necessary for efficient evaluation in the presence of fixpoints.

The definition of the product of module signatures should be simplified more,
without affecting the overall semantics. We may also consider implementing the
linking combinator in a more conventional manner, in which the compiled modules
are not composed and reduced (with possible copying of some code), but instead
the compiled bodies stay separated and their functions are called whenever neces-
sary. Perhaps a version of this idea is implementable just by changing or restricting
the reduction rules for core language records.

3.4 Type reconstruction algorithms

Despite the mandatory types of values listed in specifications, Dule programs re-
quire type reconstruction. First of all, there can be locally defined values with
undeclared types, and secondly, there is significant ambiguity of typing introduced
by the anonymous sum and record types, the explicit (co)inductive types, the built
in (co)inductive combinators and mapping. Similarly, although the preferred cod-
ing style in the module language assumes explicit specifications of almost all ba-
sic modules, the module projections, which can be separately compiled, and the
various grouping operations introduce a lot of ambiguity that has to be resolved
by specification reconstruction.



Our type reconstruction algorithm for core language values, unlike the classical
Hindley-Milner algorithm for the ML type system, features deferred unification
and uses an additional kind of type variables representing indexed lists of types.
The current, implemented version of the algorithm seems to be complete, but the
proof has yet to be attempted. The efficiency of the algorithm, as well as of the
nonstandard substitution and unification algorithms have to be improved. Then we
would like to verify that the typing reconstructed by the algorithm is minimal and
study the possible choices of minimal typings from the perspective of programming
practice. We would also like to prove that the complexity of the reconstruction
algorithm is polynomial, assuming a constant bound on the nesting of the mapping
combinator. We also conjecture the unrestricted problem is exponential, due to the
thorough state space search when unifying types generated by nested mapping.

Our specification reconstruction is general and light-weight, by not using the
semantics of the core language. Only the completely reconstructed least detailed
specifications (if reconstruction does not fail) are checked for soundness using core
language type-checking. We suspect that any specification reconstruction based on
our typing rules for modules must be partial, because it has to approximate uni-
fication modulo the semantic equality (very nontrivial on the module level) by a
unification with two kinds of signature variables, performed modulo a simple syn-
tactic equality. We wonder if the algorithm can be made complete without sacrific-
ing compositionality that is crucial for separate compilation. The main problems
with the unification are that the module product is not injective and that the con-
ditions for interchange of signature specialization with signature product are not
always met. However, for natural examples the algorithm succeeds and only in
very special cases the reconstruction has to be aided with spurious specification
annotations.
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