
The Simple Category of Modules

Miko laj Konarski
mikon@mimuw.edu.pl

Institute of Informatics, University of Warsaw,
Banacha 2, 02-097 Warszawa, Poland

Research and Development Center, Comarch SA
Pu lawska 525, 02-844 Warszawa, Poland

Abstract. Dule is a module system for functional programming lan-
guages, modeled using elementary category theory and straightforwardly
implemented on an simple categorical abstract machine. The focus of
Dule is the ease of maintenance of complete programs at the cost of
marginalizing code-reuse mechanisms. Fine-grained modularization with-
out prohibitive programming overhead is made possible by introducing
mechanisms inspired by category theory, such as default name-driven
sharing and implicit module composition.
In this paper we concentrate on the semantics/implementation of our
module system in the abstract categorical machine, via Simple Cate-
gory of Modules (SCM), where modules are morphisms, signatures are
objects, module composition is SCM composition and categorical do-
main lists module parameters. The construction of SCM from a simple
2-categorical model of the abstract machine provides set-theoretic mod-
els for Dule and ensures that its implementation is independent of the
core language; in particular, it does not require second-order polymor-
phism nor dependent types (nor even function types). SCM is cartesian
and has enough limits to model type sharing; the constructive proof pro-
vides implementation of the related module operations. The semantics
of Dule is compositional and constructive, enabling a straightforward,
faithful implementation that follows and verifies the semantics.

Key words: module systems, type sharing, category theory, semantics
of programming languages, categorical abstract machines

1 Introduction

1.1 Background

Modular programming is necessary due to the growing size, complication and the
requirement of modifiability of computer programs. The most useful approach
appears to be the integration of rigorous module systems into high level pro-
gramming languages, as in Standard ML [16] or OCaml [14], with their functor
modules. However, strictly modular programming style, with explicitly defined
modular dependencies, can be sustained only in small programming projects

2 Miko laj Konarski

written in these languages [10]. In large projects, managing the many layers
of abstraction, introduced with the module hierarchy, turns out to be harder
even than manual tracing of each particular dependency in unstructured code.
Abstract and fine-grained modular programming is cumbersome, because the
headers (e.g., functor module argument headers) to be written are complicated
and module applications often trigger global type sharing errors [20]. When a
module has n parameters, O(n2) potential typing conflicts await at each appli-
cation, making not only creation of modules, but also their maintenance and
reuse very costly.

Another problem is the tension between abstraction, expressiveness and ap-
plicability of a module. In simplification: the more abstract a signature of a
module result is, the easier it is to implement the module, but the harder it is
to use the module, having lost access to it’s concrete properties. Without spe-
cialized module system mechanisms, this global tension can only be solved by
making each module excessively powerful and general so that is has answers for
any conceivable demands.

However, the usual practical approach is to gradually sacrifice abstraction
as the program grows, whereas, especially for ensuring correctness of large pro-
grams, the abstraction is crucial [4]. Especially important is abstracting from
the module’s context; e.g. from the identity of module parameters, as in the
functor-based modular programming style. Unfortunately current module sys-
tems without functors tend to hard-wire dependencies from other modules, at
least revealing their identities or identities of their types and sometimes even the
implementation of the types.

Huge collections of interdependent modules themselves require modulariza-
tion, lest managing the modules becomes as tedious as tending the mass of
individual entities in non-modular programs. Grouping of modules performed
using the mechanism of submodules often overloads the programmer with type
sharing bureaucracy or requires a violation of the abstraction guarantees. Other
solutions, some of them using external tools, such as a file-system, tend to be
cheaper, but are usually very crude and incur the risk of name-space clashes or
even ignore type abstraction.

1.2 The Module System

The Dule project is an experiment in large-scale fine-grained modular program-
ming employing a terse notation based on an elementary categorical model. The
Dule module system remedies the known bureaucratic, debugging and main-
tenance problems of functor-based modular programming (SML, OCaml) by
introducing simple modular operations with succinct notation inspired by the
simplicity of its semantic categorical model and a modularization methodology
biased towards program structuring, rather than code-reuse [1] (the latter is par-
tially supported through an auxiliary layer of the module system, not described
here). The same categorical model and its natural extensions induce an abstract
machine [5] based on their equational theories and inspire novel functional core
language features that sometimes complement nicely the modular mechanisms

The Simple Category of Modules 3

and sometimes are language experiments on their own (not described here either;
see the formal definition of Dule [12]).

The assets of the Dule project are gathered on its homepage at http://www.
mimuw.edu.pl/~mikon/dule.html, where the formal definition of the current
version of the language as well as an experimental compiler with a body of Dule
programs can be obtained. The compiler works adequately, but it still does not
bootstrap and the lack of low-level libraries precludes practical applications.
Various aspects of modular programming in Dule are demonstrated on 10000
lines of fine-grained modular Dule code, including a fine-grained modular rewrite
of the main parts of the compiler itself, but surely much more will be needed to
discover all scaling problems and fine-tune the modularization methodology.

spec DrawChart = DrawChart =

~YearTable ~Picture -> struct

sig value draw =

value draw : Picture.t if YearTable.patents_expired

end then Picture.ok

else Picture.crash

end

Fig. 1. An example signature and module in the full, sugared version of Dule. The
application of the module to its arguments (all of which should be defined earlier, not
shown here) is implicit; notice also the small signature and module headers.

Below we give an overview of the features of the full version of Dule mod-
ule system. We refer the reader to the long informal tutorial of Dule available
from its homepage that accompanies the Dule formal definition for an illustrated
overview. Highlights of Dule:

– module composition with both transparent and non-transparent versions
(the latter is the categorical composition from the semantic model)

– various module grouping mechanisms (including module categorical product
operations)

– no sharing equations (nor ‘with’ clauses nor type abbreviations); default
sharing by names

– no substructures (submodules)
– pseudo-higher-order notation for module signatures (later flattened, because

there are no higher-order modules; however, type dependencies on parame-
ters remain; not discussed here)

– recursive signatures (flattened in a more complex way; not discussed here)
– (co)inductive modules (mutually dependent modules [6] constructed using

inductive types instead of recursive types; not discussed here)
– default implicit module composition
– signatures of transparent functor applications [13] are expressible (actually

all signatures of module operations are expressible)

4 Miko laj Konarski

– compositional semantics ensures separate compilation
– no references to environments in the semantics ensures the types from module

parameters are abstract; on the other hand the abstraction can be side-
stepped in a controlled way and limited scope, if necessary

– no dependencies between declared core language level entities (all dependen-
cies are expressed through modules)

1.3 The Abstract Machine

The compiler of Dule, after type and signature reconstruction, computes the
semantics of modular programs in the language of our categorical abstract ma-
chine. The semantics, that is the machine code, can then be executed by the
machine, yielding results as expected in a programming language. The elemen-
tary notion of 2-category [11] with products is the categorical model of the
abstract machine. An equational theory of 2-categories is the basis for the typed
combinator reduction engine [7] that powers the machine.

The abstract mathematical model of the machine helped in proving its prop-
erties, in particular type-soundness and confluence. Preserving type information
in the machine language offers many benefits, among them the ability to ver-
ify type-correctness of any received piece of machine code. The machine is very
simple, especially considering that even advanced module operations can be per-
formed exclusively on the machine language module representations, without the
need to consult any additional annotations or modules’ sources.

It is possible to extend the machine (and its mathematical model) with func-
tion types, sum types, inductive and coinductive types and general recursion
(the reduction rules of our basic machine are listed in the Appendix, rules for
the extended machine can be found in Appendix A.1.4 of [12]). The resulting
machine language, with some syntactic sugar and type reconstruction, makes
for an interesting core programming language, making available to the user,
e.g., raw categorical composition (explicit substitution) and rigorously typed
built-in structured (co)recursion. The construction of the module system on top
of the abstract machine carries over to such extensions. The machine can also
be extended to execute fully typed OCaml or Standard ML code. Inversely,
simply typed λ-calculus with products, system F and ML can be presented as
2-categories with products, as needed for modeling our module system. In such
presentations, the vertical composition in the 2-categories would be substitution
and the composition of 1-morphisms would be type instantiation.

For our purposes, let’s define 2-category as comprising of two ordinary cat-
egories and, additionally, a family of categories C(c, e). The first of the two
categories is the underlying category U, that is, the category of objects and 1-
morphisms with the composition of 1-morphisms. Then, for each pair of objects
c, e, there is a category C(c, e) of all 1-morphisms with source c and target
e as objects and all 2-morphisms between them as morphisms with their ver-
tical composition. Horizontal composition yields the category of objects and
2-morphisms H, with the identity on object c equal to the 2-identity on the
1-identity on object c.

The Simple Category of Modules 5

Cat, the category of all (small) categories is an example of a 2-category.
By analogy to Cat we will call objects ’categories’, 1-morphisms ’functors’ and
2-morphisms ’transformations’. The 2-categories that are models of our abstract
machine have a distinguished category (object) * and finite products in the U and
H categories and in all categories C(c, *). If we take Set (the category of sets and
functions) for the distinguished category *, then Cat has all the required prod-
ucts, so it is a model of our abstract machine. We will denote a finite U-product
of categories c1, . . . , cn labeled i1, . . . , in, respectively, by <i1 - c1; . . . ; in - cn>.
Products in C(c, *) will be written {i1 : f1; . . . ; in : fn}.

Below we present our chosen syntax and typing of basic operations of 2-
categories with products, which is also the typing of the combinators of the
abstract machine. The ‘record’ operations that appear below are generalized
labeled tuples. First, we assign the U-source and U-target categories to functors
(which can be seen as types of the core language).

(U-identity)
F ID(c) : c→ c

f : c→ d g : d→ e

f . g : c→ e
(U-composition)

F PR(lc, i) : <i - c; . . . >→ c
(U-projection)

f1 : c→ e1 · · · fn : c→ en

<i1 : f1; . . . ; in : fn> : c→ <i1 - e1; . . . ; in - en>
(U-record)

f1 : c→ * · · · fn : c→ *

{i1 : f1; . . . ; in : fn} : c→ *
(C(c, *)-product)

Now we present the C(c, e)-domains and codomains of transformations (gen-
eralized values of a programming language). Many of the rules below have ad-
ditional, unwritten premises ensuring that the terms that appear in them have
compatible source and target categories. For example, in rule (H-comp) we re-
quire that the target of functor f1 is equal to the source of functor f2.

(H-id)
T ID(c) : F ID(c)→ F ID(c)

t1 : f1 → h1 t2 : f2 → h2

t1 ∗ t2 : f1 . f2 → h1 . h2
(H-comp)

(C(c, *)-id)
(: g) : g → g

t : f → g u : g → h

t . u : f → h
(C(c, *)-comp)

(H-pr)
T PR(lc, i) : F PR(lc, i)→ F PR(lc, i) i : {i : f; . . . } → f

(C(c, *)-pr)

6 Miko laj Konarski

t1 : f1 → h1 · · · tn : fn → hn

<i1 = t1; . . . ; in = tn> : <i1 : f1; . . . >→ <i1 : h1; . . . >
(H-record)

t1 : f → h1 · · · tn : f → hn

{i1 = t1; . . . ; in = tn} : f → {i1 : h1; . . . ; in : hn}
(C(c, *)-record)

In the rules, many combinators are written in abbreviated form and their no-
tation does not contain all the typing information, e.g., the C(c, *)-projection.
Others are written including full typing annotations, e.g., the H-projection. Later
we may sometimes switch between the abbreviated and not abbreviated nota-
tion. The C(c, *)-composition plays the role of substitution in a programming
language and C(c, *)-projections can be used as variables, but all these opera-
tions are combinators — there are no free variables anywhere — otherwise it
wouldn’t be an abstract machine, but an interpreter.

2 Simple Category of Modules

The heart of my module system is its mathematical model, the Simple Category
of Modules (SCM), which can be based on any 2-category with products that
models the core language to be used inside modules (and induces an implemen-
tation of the core language on the categorical abstract machine corresponding to
the 2-category) . Consequently, no dependent products or sums [18] or second-
order polymorphism [2] or even function types are needed for the construction
of SCM nor of the operations of the module system, to be presented in the next
section. The construction of Simple Category of Modules (SCM) should look
quite intuitive to a programmer with a minimal categorical background. The
objects of this category are module signatures and the morphisms are modules
themselves.

struct

value draw =

if YearTable.patents expired

then Picture.ok

else Picture.crash

end

{YearTable;
Picture}

sig

value draw : Picture.t

end

-

Fig. 2. Objects and morphisms in SCM.

The domain of a module is the signature of its parameters and the codomain is
the result signature of the module. The identity morphism of SCM is the identity

The Simple Category of Modules 7

module and the composition is the operation of supplying implementation of
parameters to a module. Other kinds of module composition are categorically
definable, as will be shown later.

Mod1

Sign1 Sign2
-

Mod2

Sign3
-

Fig. 3. Composition in SCM.

Categorical products model parameters (for example, the domain of a module
is usually the product of signatures of parameter modules) allowing the program-
mer to express a kind of ’module variables’ as projections in SCM. Moreover there
is enough equalizers (limits) in SCM to model type sharing specifications. Com-
plex limits built using equalizers model type sharing among parameter modules
and also between parameters and the result signature. The kind of equalizers to
be used for the semantics of our module language has a simple construction in
SCM.

Now we will proceed with the formal definition of SCM. For the rest of this
paper let us fix an arbitrary 2-category with products. Objects and morphisms
of the SCM will be built from the morphisms of the fixed 2-category. Since
the category can be, in particular, Cat with * equal to Set, SCM has a set-
theoretic semantics [17] and the signatures and modules can be thought of as
(quite complex but not higher-order) functions. Our account here is somewhat
simplified. For a completely strict and detailed account see [12].

2.1 Objects and morphisms

Objects of SCM are called signatures and are defined as follows.

Definition 1 A functor f : <i1 - c1; . . . ; ik - ck> → * of the fixed 2-
category is a signature if it can be presented as {i1 : f1; . . . ; in : fn} for
some categories lc = i1 - c1; . . . ; ik - ck and functors lf = f1, . . . , fn :
<i1 - c1; . . . ; ik - ck>→ *. The indexed list of categories lc is called the type
part of f , while the indexed list lf is called the value part of f .

This simple form of signatures resembles the syntax of simple Standard ML
or OCaml signatures where lc would correspond to names of types and lf to
types of values in module signature. In general, beside the names of types, lc
will usually contain names and kinds of parameter modules with nested names
of types (in our syntax for base module signatures the information about pa-
rameters is represented and passed around in so-called context signatures, see
Section 3.1 below). Also, when f is the signature of a group (record) of modules,
lf is an indexed list of types of value parts of the modules, as defined below. Re-
gardless of the details of the programming mechanisms, our 2-category product
operations are enough to capture the diversity with one categorical notion.

8 Miko laj Konarski

Definition 2 A module is a triple of a functor f, a transformation t and a
signature s such that there is a signature r satisfying the following conditions:

1. f : src r → src s
2. t : r → f . s

where src produces the source category of a functor and the dot in the second
condition is the U-composition. The (uniquely determined) signature r is the
categorical domain of the above module seen as a morphism of SCM and the
signature s is the categorical codomain (also uniquely determined, because given
in the triple). Functor f is called the type part of the module and t is called the
value part.

We will use the notation m : r → s to mark the categorical domain and
the categorical codomain of module m in SCM. Concrete examples of triples
constituting modules are given below.

2.2 Identity and composition

The identity module on signature s in SCM is the triple (F_ID(c), (: s), s),
where category c is the source of s. So, for example, an identity on an empty
signature will be (F_ID(<>), (: {}), {}).

Composition in SCM is the operation of supplying implementation of pa-
rameters to a module. Let us look at the OCaml code from the Dule compiler
that generates the abstract machine code for the module composition operation
m_Comp. The code should be self-explanatory except for f_COMP f1 f2, which is
an abstract syntax notation for U-composition written f1 . f2 in our concrete
syntax, t_FT f1 t2, which is the multiplication from the left by a functor f1,
that is H-composition (: f1) ∗ t2 and t_comp t1 it2, which is the composition
of transformations t1 . it2.

let m_Comp m1 m2 = (* : r1 -> s2 *)
let f1 = Dule.type_part m1 (* : r1 -> s1 *) in
let t1 = Dule.value_part m1 in
let f2 = Dule.type_part m2 (* : r2 -> s2 *) in
let t2 = Dule.value_part m2 in
let f = f_COMP f1 f2 in (* s1 = r2 *)
let it2 = t_FT f1 t2 in
let t = t_comp t1 it2 in
let s2 = Dule.codomain m2 in
Dule.pack (f, t, s2)

The following drawing shows the domains and codomains of the transfor-
mations appearing in the code of m_Comp, according to Definition 2. Transfor-
mations are here depicted by arrows. U-compositions are denoted by horizontal
bars (double minuses).

The Simple Category of Modules 9

t1 f1 t2 f2 t f1
r1 ------> -- r2 ------> -- r1 -----> --

s1 s2 f2
--
s2

The drawing below illustrates the value part of the result of module com-
position. H-composition is here represented by placing the first transformation
above the second. Vertical composition is represented by sharing a common
domain/codomain. Transformation (: f1) is the identity on f1.

(: f1)
t1 f1 ------> f1

r1 ------> -- --
f2

s1 ------> -- s1 = r2
t2 s2

Modularly speaking: m_Comp instantiates the values of m2 with the concrete
implementation of the types given in m1 and then applies the instantiated pro-
cedure to the values of m1. Consider the following composition written in the
concrete syntax of our module language (to be defined shortly):

{M = :: {} -> sig type t1 value v1 : t1 end
struct type t1 = {} value v1 = {} end}

.
:: {M : sig type t1 value v1 : t1 end} ->

sig value v2 : M.t1 end
struct value v2 = M.v1 end

When the generated machine code is executed by the abstract machine, the
implementation of value v2, which is the composition of projections M.v1, is
multiplied from the left by the implementation of the types of the first module,
that is

<M : <t1 :{}>>

resulting again in the composition of projections. The composition is then ver-
tically composed (as the second operand) with the implementation of values of
the first module, that is

{M : {v1 = {}}}

resulting in transformation {}, which is the value of v2 in the outcome module.
After some more computation, the result of composition is seen to be ex-

pressible in our module language, using the mechanism of context signatures
(the signatures written just after sig, automatically reconstructed in full Dule,
see Section 3.1 below) to retain the signature M, as follows.

10 Miko laj Konarski

:: {} ->
sig {M : sig type t1 value v1 : t1 end}
value v2 : M.t1

end
struct value v2 = {} end

Theorem 3 The above definitions of SCM constituents determine a category,
where signatures are objects, modules are morphisms and m_Comp is the compo-
sition.

Proof. The domains and codomains of modules are well defined. The equalities
about identity as the neutral element of composition follow promptly from the
properties of identities in 2-categories. The associativity of composition is easy
to establish, again using the properties of 2-categories.

2.3 Products

Products are necessary in our model to give semantics to modules that depend
on many arguments. It turns out that SCM has (labeled) products.

Theorem 4 Simple Category of Modules is cartesian.

The proof (that we omit) is constructive, by defining in OCaml, similarly
as we defined m_Comp, module operations of product of signatures, projection
module and record module. The three operations are well defined; in particular
when given correct operands they produce signatures and modules as required
in Definition 1 and 2.

Once we have products, we can easily model in SCM a module system similar
to the one of Standard ML but with no sharing requirements. Sharing require-
ments are used in modular programming to ensure that certain types, possibly
appearing in distant modules, are equal. In a framework enabling abstraction,
such as ours, guarantees of type equality are crucial to enable inter-operation
between modules. In particular, sharing equations allow programmers to solve
the diamond import problem, that is, express and automatically verify that two
types coming from different two modules are compatible, because they originally
come from a single module used to construct the two. However, sharing can be
difficult to model. In particular, the ordinary labeled products of SCM do not
suffice for this task.

2.4 Equalizers

Pullback of signatures (categorical limit of diagrams consisting of morphisms
with a common codomain) is a good model of a signature of a pair of modules
with some sharing between the two. Consider the following example, in which we
write ‘sharing type’ to mark an ad hoc notation for a sharing equation that, in
this case, requires two product types to be equal (and if the product operation
is injective in the fixed 2-category, then M1.t is equal to M2.t and M2.u is equal
to {}).

The Simple Category of Modules 11

{M1 : sig type t end;
M2 : sig type t type u end;
sharing type
{t : M1.t; u : {}}
= {t : M2.t; u : M2.u}}

Such a signature can be interpreted as a pullback of two morphisms (modules)
from signatures M1 and M2, respectively, to a common target (e.g., signature
sig type c end). The morphisms determine the types to be identified. The
first of the morphisms could look as follows:

struct type c = {t : M1.t; u : {}} end

and the second as follows:

struct type c = {t : M2.t; u : M2.u} end

However, pullbacks are not adequate for a similar task in case of many signa-
tures. A sharing requirement may refer to components that are absent in some
of the (possibly numerous) signatures, while the pullback construction is based
on diagrams with morphisms from all the objects. We could overcome the prob-
lem by considering multiple sharing equations and adding a trivial equation for
each signature absent from the main equation, but there are more elegant and
efficient solutions.

A pullback of given morphisms can be constructed as an equalizer (categorical
limit of a diagram of morphisms with the same domains and codomains; here
generalized from two morphisms to a family of morphisms) of the morphisms
prefixed with projections [19]. The projections come from the product of sources
of the morphisms. This representation is valid for the labeled pullbacks as well,
and involves labeled products and equalizers. If we allow the equalizer to be
taken of a smaller family than the one used in the product, we can capture the
sharing of components of only the chosen signatures. In fact, this construction is
just the construction of the general limit of a diagram ([15], Theorem V.2.1). It
turns out that a product of signatures with some sharing is just the categorical
limit of the diagram formed by all the signatures and the morphisms representing
the sharing requirement.

Let’s suppose we are to represent categorically a collection of five signatures
with a type shared among three of them.

{M1 : sig value v : {} end;
M2 : sig type t end;
M3 : sig type t end;
M4 : sig type u type w end;
M5 : sig type t end;
sharing type
M2.t = M3.t = M5.t}

First, we can represent the types to be shared as three morphisms (t2, t3, t5,
in this case just identities) into a common target T. Then, to construct the limit,

12 Miko laj Konarski

we take the product of the five signatures and compose the respective projections
(pi2, pi3, pi5) with the three morphisms. The equalizer of the family of the
three compositions is the sought limit signature P.

pi1
M1 -----> M1
x pi2 t2
M2 -----> M2 ----____

equalizer x pi3 \
P -----------> M3 -----> M3 ---------> T

x pi4 t3 __/
M4 -----> M4 __/
x pi5 __/ t5
M5 -----> M5

If there are several sharing equations, the sought signature is again the limit
of the diagram, this time containing several families of morphisms, each shar-
ing a codomain. In the construction using product and equalizer, the equalizers
representing consecutive sharing equations have to be composed. For a formal-
ization of the main concepts see Section 5.1.4 of [12]. Here we only cite the result
that has a constructive proof that guides the implementation of type sharing in
our module system.

Lemma 5 Let us fix an SCM over an arbitrary 2-category. For each categor-
ical diagram in the SCM representing sharing requirement between whole type
parts (the collections of all types) of modules, if the type names agree, a product
signature with sharing represented by the diagram exists.

In our module system we will apply a variant of the whole type parts sharing
requirements, in which the modules to be equated are determined by names of
nested signatures contained in a product. The sharing should take place between
type parts of module signatures having the same labels. For instance, the fol-
lowing signature (featuring context signatures, as described in the next section)
requires values M1.v1 and M2.v2 to have the same type.

{M1 : sig {M : sig type c end} type t1 value v1 : M.c end;
M2 : sig {M : sig type c end} value v2 : M.c end}

In the following example, type M.c occurring in three context signatures and
one main signature of the product will be shared in all four main signatures.

{M1 : sig {M : sig type c end} type t1 end;
M2 : sig {M : sig type c end} end;
M3 : sig {M : sig type c end} value v : M.c end;
M : sig type c end}

The context signature of M1 indicates that M is imported into M1, or rather
that module M1 is supposed to be built from M. The name M, assigned to one of

The Simple Category of Modules 13

the main signatures of the product, is interpreted as marking the same module
that was used in construction of M1. The module M is, in this particular case,
required to be provided separately as the fourth component of module record,
perhaps to be used for building other modules later on.

Our operation, equating whole type parts of modules with the same names,
has the same syntax as for the ordinary labeled product, as no explicit sharing
specifications need to be written (notice the absence of explicit ‘sharing type’
requirements in the above examples). The operation will be called product with
name-driven sharing or (ambiguously but succinctly) just product. Every prod-
uct with name-driven sharing is a categorical limit of a simple sharing diagram
and can be constructed as a composition of a number of equalizers of whole type
parts of modules (slightly generalized to allow nesting), taken on the product of
signatures. The operations of projection with name-driven sharing and record
with name-driven sharing are expressible in an analogous way using the opera-
tions of the ordinary product and the equalizer. The proof of Lemma 5 shows
how to construct the equalizer operations using the abstract machine code.

3 Semantics/Implementation of the Module System

After constructing and analyzing the SCM we use it to develop a module system
— a programming-oriented language for SCM (though without signature recon-
struction and syntactic sugar it is not yet user-friendly, see [12] for that). If we
fix a 2-category for the core language, we can construct the unique SCM built
upon that 2-category. Our module system is an extension of the SCM (treated
as a partial algebra) by several module operations, most of which are partial.
The carriers are not extended and we don’t need any additional assumptions on
the core language, in particular we do not require function types.

The semantics of our module system is compositional and environment-free,
which implies that the modules may be compiled separately. The correctness
and the result of a given module operation depend only on the target code
(SCM morphisms, abstract machine code) obtained from the operands, so the
original source code can be compiled only once and then forgotten. The lack
of any environments also ensures that module parameters are abstract. Upon
supplying arguments the abstraction can be retained or overcome, depending on
the operations used (composition vs. instantiation).

3.1 Basic operations

We start an overview of the typing and semantics of operations of our mod-
ule system. In the typing rules we do not formulate additional definedness side
conditions, hence the rules do not completely capture definedness properties of
the operations. They only indicate whether a raw term belongs to the language
and what its domain and codomain are. The complete definedness conditions
are given and discussed in detail in the formal definition of Dule [12], where also
the abstract machine code for the operations is given.

14 Miko laj Konarski

In the formal definition we also argue that each case of partiality of any of
the modular operations corresponds to a class of modular programming errors.
We prove that the semantics of the operations is well defined; in particular,
their results belong to the set of objects and morphisms of the SCM. We check
that the declared parameter and result signatures of modules coincide with SCM
domains and codomains of the morphisms the module expressions denote. The
proofs are straightforward, if long, because they were constructed alongside the
construction of the semantics. The proof of well-definedness of the semantics of
the module language constitutes a major part of the proof of correctness of the
Dule compiler.

Here are the rules for the already defined identity and composition operations
and for base modules that use elements available from an argument satisfying
signature r to define core language types and values as specified in s.

(identity)
(: s) : s→ s

m1 : r1 → s m2 : s→ s2
m1 . m2 : r1 → s2

(composition)

s = sig r′ type i . . . value j : f . . . end

(:: r -> s struct type i = g . . . value j = t . . . end) : r → s
(base)

Signatures of the same form as s, in the last rule, are called base signatures
and r′ inside them can specify less components than the corresponding r. Such
r′, occurring inside s, is called a context signature, on which types of values
in s may depend (if r is {}, it is usually omitted in writing; in sugared Dule
syntax r disappears altogether). Base signatures can be viewed as products with
name-driven sharing (as defined in the next subsection) of micro-signatures f, . . .,
while base modules are isomorphic to records with name-driven sharing of micro-
modules that only define one type or one value.

3.2 Cartesian structure

As told in Section 2.3, SCM is cartesian, which enables parameterization by
named modules. Inside a modular expression with product domain the parameter
modules are treated as ‘locally’ abstract. When several module expressions are
put within a module record with a product domain, they all share the same
locally abstract arguments. However, this abstraction does not prevent specifying
equalities between individual types.

For the semantics of our module system we choose to employ implicit sharing
of whole type parts of modules, determined by names of components, as illus-
trated in Section 2.3. When signatures are grouped in a product, all top-level
context types (types inherited from context signatures) with the same name are
to be shared. In the result, top level type components of a product of signa-
tures are the sets of types defined in the signatures themselves indexed by the
signature names, together with all their context types.

This particular merger of labeled product and equalizer, will be called prod-
uct with name-driven sharing, or just product. The notation for the operations

The Simple Category of Modules 15

is the same as for the ordinary labeled categorical product. This setup results
in concise syntax, with somewhat limited expressiveness, which is recoverable
with the help of instantiation operation (e.g., to rename module parameters)
described later on.

i : {i : r; . . . } → r
(projection)

m1 : r → s1 · · · mn : r → sn

{i1 = m1; . . . ; in = mn} : r → {i1 : s1; . . . ; in : sn}
(record)

Whenever the product operations are defined, they satisfy all the equalities
required of a categorical product. Moreover, whenever they are undefined their
signature operands show that the programmer tried to impose a contradicting
sharing requirement, or their module operands show that the programmer vio-
lated the sharing requirements he had imposed earlier.

Observation 6 The product signature with the projection modules form a cat-
egorical cone over the diagram of sharing requirement representing name-driven
sharing among the product operands.

3.3 Specialization, instantiation and trimming

There are two modular operations: instantiation and trimming, that have no
clear categorical meaning in the context of SCM, though they have a simple
mathematical definition in terms of 2-categories with products.

(instantiation)
m1 : r1 → s m2 : s→ s2
m1 | m2 : r1 → m1 | s2

m1 : r1 → s1
m1 :> r2 : r1 → r2

(trimming)

The operation m1 | s2 specializes signature s2 to a narrower field of use
— restricted to the types of module m1. The operation m1 | m2 instantiates
module m2 so that it has more concretely defined manner of operation and more
strictly specified field of operation, determined by module m1.

The instantiation operates on the value parts of operand modules in exactly
the same way as the module composition m_Comp does. Yet instantiation is not a
good candidate for an alternative composition in SCM: it is not always defined
even if codomain of the first operand agrees with the domain of the second. A
second phenomenon differentiating instantiation from composition is that the
codomain of the whole operation may differ from the codomain of the second
operand. This implies that instantiation is not associative.

Despite not having the pleasant properties of composition, instantiation has
a profound programming meaning. While composition corresponds to non-trans-
parent functor application [8], where arguments are used as tools only, instan-
tiation corresponds to transparent application [13], where arguments specialize
the output signature of the functor.

16 Miko laj Konarski

The trimming operation performs a coercion of a module to a given signature.
If necessary, some type and value components of an operand module are removed,
and only those mentioned in the operand signature remain. Ideally trimming
should be absent from the language, but it is indispensable when we want to
present an instantiated module as if it had not been instantiated. Moreover,
when a larger module is used in a role of a smaller one, trimming relieves the
user from writing the interface module.

3.4 Linking

The linking operation is the Dule standard way of supplying modules with argu-
ments. It is defined (just as two other, simpler grouping operations, omitted here
due to space constraints) using the already described operations of our module
system. This witnesses the power of the system, as well as greatly simplifies
proving properties of linking — in particular, the proof of its well-definedness
and the adequacy of its declared domains and codomains.

m1 : {ik1 : sk1; . . . ; j1 : r1; . . . } → s1
...

mn : {ikn
: skn

; . . . ; jn : rn; . . . } → sn

link {i1 = m1; . . . ; in = mn} :
{j1 : r1; . . . ; jn : rn; . . . } → {i1 : s1; . . . ; in : sn}

(linking)

The domains of linking operands have to be product signatures, and needn’t
be strictly equal to each other. It suffices if there are equal components at the
same labels. The domains may contain components not present in the domain of
the whole linking expression but each of these has to be a codomain of one of the
operand modules, indexed by the name of the module. These components will
not be left over in the domain of the linking operation, but will be the places at
which compositions with other operands occur immediately. Like in the module
record operation, the codomain of the linking expression is just the product of
codomains of all operand modules.

The linking operation eases the grouping of modules (already enabled by the
module record operation) that alleviates the need for submodules, as known from
conventional module systems. The linking operation fits well with our choice of
sharing mechanism. The module product operation assumes that components
with the same names are shared, while the linking operation assumes parame-
ters are implemented by modules of the same names. Inside linking expression,
supplying implementation of the parameters is automatically performed with
multiple compositions and the user is free from writing the compositions by
hand. There is also no need to artificially introduce submodules for the purpose
of specifying their sharing with others; together with implicit composition this
greatly reduces common modular bureaucracy. Linking facilitates naming and
applying modules, but the language remains first-order, readily compilable to the
abstract machine language and the implementation avoids copying or storing the
source code of modules.

The Simple Category of Modules 17

References

1. Anya Helene Bagge, Martin Bravenboer, Karl Trygve Kalleberg, Koen Muilwijk,
and Eelco Visser. Adaptive Code Reuse by Aspects, Cloning and Renaming. Tech-
nical Report UU-CS-2005-031, Institute of Information and Computing Sciences,
Utrecht University, 2005.

2. E. S. Bainbridge, P. J. Freyd, A. Scedrov, and P. J. Scott. Functorial polymorphism.
Theoretical Computer Science, 70(1):35–64, January 1990.

3. Dave Berry. Lessons from the design of a Standard ML library. Journal of Func-
tional Programming, 3(4):527–552, October 1993.

4. Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Architectural specifications
in Casl. Formal Aspects of Computing, 13:252–273, 2002.

5. G. Cousineau, P. L. Curien, and M. Mauny. The Categorial Abstract Machine.
Science of Computer Programming, 8:173–202, 1987.

6. Karl Crary, Robert Harper, and Sidd Puri. What is a Recursive Module? In SIG-
PLAN Conference on Programming Language Design and Implementation, 1999.

7. P.-L. Curien. Categorical Combinators. Information and Control, 69(1-3):189–254,
1986.

8. Robert Harper and Mark Lillibridge. A Type-Theoretic Approach to Higher-Order
Modules with Sharing. In Proceedings of the ACM Conference on Principles of
Programming Languages, pages 123–137, Portland, Oregon, January 1994.

9. Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-Order Modules and
the Phase Distinction. In Conference Record of the Seventeenth Annual ACM Sym-
posium on Principles of Programming Languages, pages 341–354, San Francisco,
CA, January 1990.

10. Robert Harper and Benjamin C. Pierce. Advanced module systems: a guide for
the perplexed. In Proceedings of the ACM Sigplan International Conference on
Functional Programming (ICFP-00), volume 35.9 of ACM Sigplan Notices, pages
130–130, N.Y., September 18–21 2000. ACM Press.

11. C. B. Jay. An introduction to categories in computing. Technical Report UTS-
SOCS-93.9, University of Technology, Sydney, 1993.

12. Miko laj Konarski. Application of Category-Theory Methods to the Design of a Sys-
tem of Modules for a Functional Programming Language. PhD thesis, MIMUW,
2007.

13. Xavier Leroy. Applicative functors and fully transparent higher-order modules.
In Proc. 22nd symp. Principles of Programming Languages, pages 142–153. ACM
Press, 1995.

14. Xavier Leroy. The Objective Caml system: Documentation and user’s manual,
2000. With Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon.
Available from http://caml.inria.fr.

15. S. MacLane. Categories for the Working Mathematician. Springer-Verlag, 1971.
16. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition

of Standard ML (Revised). The MIT Press, 1997.
17. John C. Reynolds. Polymorphism is not set-theoretic. In Gilles Kahn, David B.

MacQueen, and Gordon D. Plotkin, editors, Semantics of Data Types, volume 173
of Lecture Notes in Computer Science, Berlin, 1984. Springer-Verlag.

18. Claudio V. Russo. Non-dependent Types for Standard ML Modules. In Principles
and Practice of Declarative Programming, pages 80–97, 1999.

19. D. Sannella and A. Tarlecki. Category theory. In Foundations of Algebraic Specifi-
cations and Formal Program Development, chapter 3. Cambridge University Press,
to appear. See http://wwwat.mimuw.edu.pl/~tarlecki/book/.

18 Miko laj Konarski

20. Perdita Stevens. Experiences with the ML Module System, or, Why I Hate ML.
Transparencies for a talk given to the Edinburgh ML Club and Glasgow Functional
Programming group. http://www.dcs.ed.ac.uk/home/pxs/talksEtc.html, 1998.

Appendix: Abstract Machine Execution

Below, we abuse notation, writing multiplications by a functor, that is horizontal
compositions with C(c, e)-identity, without the identity term constructor, as in
f ∗ <i = u; . . . >, which is intended to mean T_id(f) ∗ <i = u; . . . >. Our abstract
machine executes machine code by combinator reduction as follows, where we
list the reduction rules for functors first.

f . F_ID(d)→ f (1)
F_ID(c) . g → g (2)
f . (g1 . g2)→ (f . g1) . g2 (3)

<i : fi; . . . > . F_PR(ld , i)→ fi (4)
f . <i : g; . . . >→ <i : f . g; . . . > (5)
f . {i : g; . . . }→ {i : f . g; . . . } (6)

Below are the reduction rules for transformations.

f ∗ <i = u; . . . >→ <i = f ∗ u; . . . > (7)
f ∗ T_id(g)→ T_id(f . g) (8)
f ∗ (u1 . u2)→ (f ∗ u1) . (f ∗ u2) (9)
t ∗ F_ID(d)→ t (10)
t ∗ (f . g)→ (t ∗ f) ∗ g (11)

<i = ti; . . . > ∗ F_PR(ld , i)→ ti (12)
T_id(f) ∗ F_PR(ld , i)→ T_id(f . F_PR(ld , i)) (13)
(t1 . t2) ∗ F_PR(ld , i)→ (t1 ∗ F_PR(ld , i)) . (t2 ∗ F_PR(ld , i)) (14)

t ∗ <i : g; . . . >→ <i = t ∗ g; . . . > (15)
T_ID(c)→ T_id(F_ID(c)) (16)

T_PR(lc, i)→ T_id(F_PR(lc, i)) (17)
t . T_id(g)→ t (18)
T_id(f) . t→ t (19)
t . (u1 . u2)→ (t . u1) . u2 (20)

{i = ti; . . . } . T_pr(lg , i)→ ti (21)
t . {i = u; . . . }→ {i = t . u; . . . } (22)

f ∗ T_pr(i : g; . . . , j)→ T_pr(i : f . g; . . . , j) (23)
f ∗ {i = u; . . . }→ {i = f ∗ u; . . . } (24)

t ∗ u→ (f ∗ u) . (t ∗ h) (25)

