
Anonymous (co)inductive types: A way
for structured recursion to cohabit with

modular abstraction
Mikołaj Konarski

Institute of Informatics, Warsaw University
Banacha 2, 02-097 Warszawa, Poland

mikon@mimuw.edu.pl

Abstract

We investigate the interaction between structured recursion combinators and
modularization in the style of Standard ML. When built-in structured recursion
combinators are straightforwardly added to a language like SML’97 or OCaml, they
cannot operate over values of abstractly specified types. Consequently, when a
program is modularized in an abstract and fine-grained way, the structured recursion
combinators can hardly ever be used. We explore various ways of solving this
incompatibility, presenting the possible solutions in our modular programming
language with a verbose notation for inductive and coinductive types and operations.
We propose structured recursion programming constructs that are, in our opinion,
best suited for action across abstract module boundaries: anonymous inductive and
coinductive types separated from sum and product types, and the related operations.
We discuss advantages and disadvantages of the proposed programming idioms and
their expressibility in other languages and formal systems, such as OCaml, Charity,
Functorial ML and PolyP. We describe their precise typing and semantics as parts of
our programming language. Finally we discuss other possible uses of the introduced
constructs, related to both polytypism and modular programming and inspired by the
notions of views and 2-level types.

Keywords: structured recursion, module systems, abstraction, category theory, (co)inductive types

1. STRUCTURED RECURSION ACROSS MODULES

The problem of structured recursion over abstract types is not difficult to solve, but in our
opinion it is interesting, important and the various ways of solving it are, as far as we know,
unexplored. In this section we argue about advantages and disadvantages of different solutions
through examples. We present our examples using the syntax of programming language Dule [9].
The language has a light-weight module system and a verbose notation for the inductive and
coinductive operations. This allows us to easily present many variants of construction and
specification of (co)inductive values.

The syntax of the core language is close to that of OCaml [10], including its recent notational
novelties. In particular, function parameters are named by labels adorned with tildes and
anonymous sum type variant names begin with back-quotes. Neither the labels nor the variant
names have scopes or types assigned within a scope. All the types — function types, sum types,
record types, (co)inductive types — are anonymous, that is, they have no identity other than
their construction. The labels and variant names have no semantics outside types or their related
operations, and they can appear in many types at once. Type reconstruction resolves emerging
ambiguities.

We always mark labels of function and module parameters with tilde, as in ~n and retain the
tilded labels in typing (in OCaml the tildes are usually optional). However, in function bodies the
parameters are referred to without ~, as in n. The phrase Nat.leq ~n:n ~it:1, abbreviated to
Nat.leq ~n ~it:1, is an application of a function leq from the module Nat to the arguments n

Draft — May 23, 2006 1

mailto:mikon@mimuw.edu.pl�

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

and 1 at positions labeled n and it, respectively. Label it appears in the typing of many built-in
operations, but the label has no special status and can be freely used by the programmer — in
fact, there are no reserved labels nor variant names in Dule. Names of variants of anonymous
sum types are marked, similarly as in OCaml, by back-quote and are always written uppercase,
as in ‘True. The sum types themselves are written between square brackets, just as is case
analysis. A brief description of the semantics of the core language of Dule and the typing rules for
all structured recursion constructs used below are given in Section 2. A full language definition,
with a tutorial and theoretical analysis of the semantics can be found in [9].

Every example given in this paper can be successfully type-checked and compiled
using the Dule compiler [8]. The file gathering all the examples is http://www.mimuw.
edu.pl/∼mikon/Dule/dule-phd/test/anonymous.dul and can be processed by issuing
“./dule ../test/anonymous.dul” or “make test-anonymous”.

1.1. Difficulties

1.1.1. Structured recursion within a module

Let us consider a specification (parameterized signature) and a module of lists with elements of
type Elem.t. Module List is implicitly typed with the signature of the same name, so the module
has parameter Elem.

spec List =
~Elem:sig type t end ->
sig

type t
value nil : t
value cons : ~head:Elem.t ~tail:t -> t

end
module List =
struct

type t = ind list: [‘Nil|‘Cons {head : Elem.t; tail : list}]
value nil = ‘Nil . con
value cons = fun ~head ~tail -> {head = head; tail = tail} .‘Cons . con

end

Type t is defined above as inductive closure of a sum type with variants ‘Nil and ‘Cons. Value
nil is defined as a constructor of the inductive type corresponding to variant ‘Nil of the sum
type. Value cons is a function that produces a record of its arguments, taken into the sum type by
composing with injection ‘Cons and then taken into the inductive type of lists by composing with
the inductive type constructor combinator con.

Inside the module we can use induction (fold) over the inductive type. For example we can add
a list catenation function to the signature and to the module implementation, as follows. (In case
of problems with the new syntax, compare with the implementation of append written in a more
conventional style in the next section.)

value append : ~l1:t ~l2:t -> t

value append = fun ~l1 ~l2 ->
match l1 with
fold [‘Nil -> l2

|‘Cons ht -> ht .‘Cons . con]

However, append couldn’t be defined outside module List, because type t in the signature is
specified as abstract and the operations provided in the signature enable only construction of
lists, not their destruction; in particular no case analysis is possible.

Draft — May 23, 2006 2

http://www.mimuw.edu.pl/~mikon/Dule/dule-phd/test/anonymous.dul�
http://www.mimuw.edu.pl/~mikon/Dule/dule-phd/test/anonymous.dul�

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

If modules are truly abstract, as is the case in Dule, OCaml, SML’97 [12] (as opposed to
SML’90 [11]), then (co)inductive combinators cannot act on abstractly specified types. To enable
structured recursion we could make the type of lists transparent using a type abbreviation.
However, then all benefits of abstraction are lost — in particular, implementations of the list
type even slightly different than the specified implementation can no longer be made to fit the
signature (see the type of lists and their length in the example in Section 1.2.2). Consequently, a
programmer using the module with transparent type cannot abstract from the details of the type’s
implementation. A better solution would be to provide two specifications of types of lists: one
abstract, the other transparent. We will present a similar, but cleaner approach using anonymous
inductive types in Section 1.2.1.

1.1.2. Deconstruction of an inductive type

To maintain abstraction but enable deconstruction of lists, we can add to the module of lists a
conversion operation. The operation tde converts a value of the abstract list type to a value
of a corresponding sum type, where the tail component is again the list type. Notice that the
result type of tde is not the same as the inductive type of lists! Operations tde destructs a list by
composing it with combinator de, which is the categorical isomorphism inverse to con.

value tde : ~it:t -> [‘Nil|‘Cons {head : Elem.t; tail : t}]

value tde = fun ~it -> it . de

Conversion tde allows us to use case expression and recursive definitions by case analysis
(value rec below). However, this is not an instance of structured recursion, even if the pattern of
recursion is the same as in the definition using fold above, because the recursive call to append
is here performed explicitly.

spec ListOps =
~List ->
sig

value append : ~l1:List.t ~l2:List.t -> List.t
end

module ListOps =
struct

value rec append = fun ~l1 ~l2 ->
match List.tde ~it:l1 with
[‘Nil -> l2
|‘Cons {head; tail} ->

List.cons ~head ~tail:(append ~l1:tail ~l2)] (* recursive call! *)
end

In cases when we want to operate on values of a particular inductive type only with general
recursion, tde as above is all we need. An abstract type with only constructors and tde is
guaranteed to be used in a program only in a conventional functional way — without structured
recursion. “Polymorphic variants” of OCaml can be used to easily specify and define functions
similar to tde. Strictly speaking, the OCaml variant types are inductive types merged with sum
types, but since OCaml does not have structured recursion combinators, the behavior of the
OCaml tde and Dule tde would be analogous. In Charity [3] the inductive and sum types are
merged, as in conventional functional programming languages, but the language has no general
recursion, so a distinction between the type constructors would be mostly pointless.

In PolyP [4], as in underlying Haskell [13], there is no way to express sum types outside of
inductive (recursive, in fact) type closure. On the other hand, PolyP has both structured and
general recursion mechanisms, so the ability to mark abstract types for one or the order kind
of recursion would be useful. The PolyP counterpart of tde (or rather of our built-in destructor
combinator de), called out, is typed using an additional sum-recursive type with void type closure.

Draft — May 23, 2006 3

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

The unreadable types of instances of out are not problematic for polytypic programming inside
modules, but they do not seem acceptable for specifications of modules.

Functorial ML [6] offers a finer distinction, similar to the one in Dule: there are distinctive
sum and inductive type constructors and term constructor unwrap analogous to tde. However,
Functorial ML is described as only an intermediate language, and indeed unwrap seems to vanish
in examples of Functorial ML programs written in ML-like notation. We would suggest that the
distinction between sum and inductive types is not forgone when Functorial ML is equipped with
syntactic sugar or integrated into Standard ML. Perhaps the Dule notation may suggest ways to
keep the distinction without overburdening the programmer.

1.1.3. Manually defined combinators

We would like to retain abstraction of the list type, at the same time enabling structured recursion
over lists. This can be done by defining an iterator as a value in module List. In the following
code, for simplicity, we present only a monomorphic version of the iterator foldf.

value foldf : ~f:~e:Elem.t ~acc:t -> t
~init:t
~l:t -> t

value foldf = fun ~f ~init ~l ->
match l with
fold [‘Nil -> init

|‘Cons {head; tail} -> f ~e:head ~acc:tail]

However, definitions by structured recursion using foldf are cumbersome, because one cannot
use the notation for case analysis. If the implementation of the abstract type contains a sum
with many variants, as is the case, e.g., with types representing grammars, the iterator function
receives a multitude of parameters making it especially unreadable.

We can do better by using anonymous sum types (closed sum type expressions). Again we
present only the monomorphic case.

value foldr : ~f:~it:[‘Nil|‘Cons {head : Elem.t; tail : t}] -> t
~l:t -> Elem.t

value foldr = fun ~f ~l ->
match l with
fold f

With the help of function foldr we can define functions by structured recursion over abstract types
using the convenient notation for case analysis, as in the following example.

spec ListOps =
~List ->
sig

value append : ~l1:List.t ~l2:List.t -> List.t
end

module ListOps =
struct

value append = fun ~l1 ~l2 ->
List.foldr

~f:[‘Nil -> l2
|‘Cons {head; tail} -> List.cons ~head ~tail]

~l:l1
end

Draft — May 23, 2006 4

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

Actually, OCaml mixed sum/inductive types can be used for foldr as well. This time, though,
the semantic mix-up of sum and inductive types is quite glaring. The domain of the functional
argument to a structured recursion combinator is supposed to be a sum type, not an inductive
type as in OCaml. In particular, the user is not supposed to define the functional argument to an
iterator by recursion over the inductive type, which is possible when using OCaml “polymorphic
variants” to specify the type of foldr.

For full generality, the foldr approach requires polymorphism not only in the core language but
also in module signatures. Moreover, for each kind of a polytypic structured recursion combinator
of the programming language at hand (such as fold, map, zip, etc.) we would need corresponding
signature and module entries. If we intend to also use general recursion over our abstract type,
we additionally need tde as well. This can even be seen as an advantage of the foldr approach,
since the verbosity gives us some control on the kind of recursion allowed over the abstract type
of the defined module.

However, the real problem is that the polytypic flavor [7] of structured recursion is utterly lost. The
foldr and similar functions have to be defined anew and with different typing for each different
inductive type in a program. As before, neither built-in nor user defined (if a language supports
them) polytypic combinators can act over the values constructed with List module’s operations.

1.2. Proposed approach

1.2.1. Anonymous inductive types

We propose an approach to structured recursion across modules that (in the simplest case)
assures full power of polytypic combinators, as if there was no module boundaries. At the
same time our approach, based on the ability to write inductive types (ind . . .) anonymously
in signatures, does not violate the abstraction of the types defined in modules and allows
their different but compatible implementation to look the same to the outside world. Here is
our advocated version of the signature and module List. In the last line of the module’s
implementation we have written the record {head = head; tail = tail} in an abbreviated form,
as {head; tail}.

spec List =
~Elem:sig type t end ->
sig

type t
value t2ind : ~it:t -> ind list: [‘Nil|‘Cons {head : Elem.t; tail : list}]
value nil : t
value cons : ~head:Elem.t ~tail:t -> t

end
module List =
struct

type t = ind list: [‘Nil|‘Cons {head : Elem.t; tail : list}]
value t2ind = fun ~it -> it (* identity! *)
value nil = ‘Nil . con
value cons = fun ~head ~tail -> {head; tail} .‘Cons . con

end

In the simplest case, the type conversion operation t2ind is implemented as the identity function,
despite the complex typing of its codomain. See next section for a case of t2ind that is not an
identity, but has the same typing as above.

Lists equipped with the conversion to the anonymous inductive type can be used as follows:

spec ListOps =
~List ->
sig

Draft — May 23, 2006 5

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

value append : ~l1:List.t ~l2:List.t -> List.t
value is_nil : ~l:List.t -> [‘True|‘False]

end
module ListOps =
struct

value append = fun ~l1 ~l2 ->
match List.t2ind ~it:l1 with
fold [‘Nil -> l2

|‘Cons {head; tail} -> List.cons ~head ~tail]
value is_nil = fun ~l ->

match (List.t2ind ~it:l) . de with
[‘Nil -> ‘True
|‘Cons -> ‘False]

end

In function is_nil we see the expression (List.t2ind ~it:l) . de, which is not equivalent to
tde ~it:l from the previous sections, but for this application it suffices. Operation tde can be
expressed using t2ind, nil and cons, but in a complicated way (see Section 1.4). For performing
general recursion in the absence of tde, usually a less expensive solution is to operate solely
on the result of t2ind, without references to the abstract type. In this way, t2ind enables both
structured recursion and general recursion, although the latter is typed in a less clean way.

If we plan on using values of the abstract inductive type mainly with general recursion, or on
providing complex implementations, where t2ind is expensive and tde is not, we can equip the
signature with both t2ind and tde. The separation of inductive and sum types in the language
ensures that the typing of the two conversion operations will be distinct, according to their
functionality, and that the their code can be accordingly optimized. In different parts of the program
the module can be seen with a smaller specification, depending on whether it is to be used locally
with structured or general recursion.

In OCaml, in the absence of structured recursion combinators, t2ind is equivalent to tde. Charity
does not have anonymous datatypes and its notation for datatypes, though suggestive and
readable, results in quite long definitions. However, by introducing local datatype definitions in
signatures, we could provide a typing for t2ind. We are not aware of any extension of Haskell
with anonymous datatypes or “polymorphic variants”, so PolyP types cannot be used for t2ind.
PolyP functors are anonymous, but even more so than desired — they do not record variant
names for sum types, for instance. They are not designed to type values, but to define polytypic
operators.

In Functorial ML functors are anonymous, as in PolyP, but types are defined using functors, so
there is enough notation (even if quite low-level) to implement values of the types constructed
with functors. What is disturbing, however, is the intentional interpretation of functors. For example,
functor composition is not associative, though suitable isomorphisms are provided as values of the
language. The intentionality is useful for directing type reconstruction of the mapping combinator,
so that it becomes unambiguous (compare with Fact 2.1), but intentional specification of modules
creates paradoxes (e.g., you have to write isomorphisms to compare a list of (pairs of integers)
with a (list of pairs) of integers). However, it is possible that the intentionality is meant to vanish
in the final semantics — Functorial ML is said to be an intermediate language. Then matching
modules to specifications is again simple and intuitive, but separately compiled modules with
inductive types and t2ind conversions loose their ability to direct type reconstruction of mapping.

1.2.2. Abstraction with anonymous inductive types

To see how our approach adapts to type implementation changes, let us consider an extension
of the module specification List with a parameter Nat (a module of natural numbers with basic
operations) and operation length computing the length of a list.

Draft — May 23, 2006 6

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

spec LengthList =
~Nat ~Elem:sig type t end ->
sig

type t
value t2ind : ~it:t -> ind list: [‘Nil|‘Cons {head : Elem.t; tail : list}]
value nil : t
value cons : ~head:Elem.t ~tail:t -> t
value length : ~l:t -> Nat.t

end

The module can be implemented as an extension of our module of ordinary lists.

module LengthList =
struct

type t = ind list: [‘Nil|‘Cons {head : Elem.t; tail : list}]
value t2ind = fun ~it -> it
value nil = ‘Nil . con
value cons = fun ~head ~tail -> {head; tail} .‘Cons . con
value length = fun ~l ->

match l with
fold [‘Nil -> Nat.zero

|‘Cons {head; tail} -> Nat.succ ~n:tail]
end

We can also provide a more sophisticated implementation, based on a different type of lists. Notice
that the module fits the same signature LengthList and its behavior (in particular with respect to
polytypic structured recursion combinators) is indistinguishable from the behavior of the simpler
implementation, apart of the better asymptotic complexity of length.

module LengthList =
struct

type t = {n : Nat.t;
l : ind list: [‘Nil|‘Cons {head : Elem.t; tail : list}]}

value t2ind = fun ~it:{n; l} -> l (* not identity! *)
value nil = {n = Nat.zero;

l = ‘Nil . con}
value cons = fun ~head ~tail:{n; l} ->

{n = Nat.succ ~n;
l = {head; tail = l} .‘Cons . con}

value length = fun ~l:{n; l} -> n
end

Conversions t2ind belonging to different datatypes can be composed as in the following, third
and the last, implementation of module LengthList. We see here an explicit typing of the module,
adding a parameter module List (matching the specification List defined in the previous section).

module LengthList =
:: ~List -> LengthList
struct

type t = {n : Nat.t; l : List.t}
value t2ind =

let local_t2ind = fun ~it:{n; l} -> l in
fun ~it -> List.t2ind ~it:(local_t2ind ~it) (* composition *)

value nil = {n = Nat.zero;
l = List.nil}

value cons = fun ~head ~tail:{n; l} ->
{n = Nat.succ ~n;
l = List.cons ~head ~tail:l}

Draft — May 23, 2006 7

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

value length = fun ~l:{n; l} -> n
end

1.2.3. Anonymous coinductive types

OCaml has no coinductive structured recursion operations, neither has Functorial ML, but the
latter would be easy to extend. Charity has coinductive structured recursion operations and
coinductive types. PolyP has operations, but they are typed using a kind of recursive types, the
same used for inductive operations, so that a single type can be regarded as both inductive
and coinductive. We consider recursive types unsafe (a value has many types), especially
in a language with anonymous datatypes and polytypic combinators with ambiguous typing.
Nevertheless, the PolyP approach seems convenient, e.g., for libraries, and we think it can be
partially reconstructed using modules, see Section 3.2.

The code in this chapter is inspired by example programs written for the Charity programming
language [1]. For coinductive types we provide an inverse conversion ind2t, since the coinductive
structured recursion combinator unfold produces values of a coinductive type that have to be
converted to the abstract type. For coinductive types based off sum types the conversion tde
turns out to be quite useful, as well, mainly to enable case analysis over the sum type. Time
constructors of lists are not mandatory, since we can construct lists with unfold but, especially for
finite coinductive lists, they are useful.

spec CoList =
~Elem:sig type t end ->
sig

type t
value ind2t : ~it:coind c: [‘Nil|‘Cons {head : Elem.t; tail : c}] -> t
value tde : ~it:t -> [‘Nil|‘Cons {head : Elem.t; tail : t}]
value nil : t
value cons : ~head:Elem.t ~tail:t -> t

end
module CoList =
struct

type t = coind c: [‘Nil|‘Cons {head : Elem.t; tail : c}]
value ind2t = fun ~it -> it
value tde = fun ~it -> it . unde
value nil = ‘Nil . uncon
value cons = fun ~head ~tail -> {head; tail} .‘Cons . uncon

end

The destructor combinator unde taking an inductive type value to an underlying type (in this case
a sum type) has an inverse uncon. The constructor combinator uncon can only construct finite
values of the coinductive lists type, as opposed to unfold that can be used to construct infinite
lists.

In the following example we implement catenation of coinductive lists. Since tde is available, we
could implement the operation with general recursion and without ind2t. But then the computation
fails to terminate whenever list l1 is infinite. In such cases, out code with ind2t and unfold
terminates and produces an infinite list (observationally equal to l1).

spec CoListOps =
~CoList ->
sig

value append : ~l1:CoList.t ~l2:CoList.t -> CoList.t
value is_nil : ~l:CoList.t -> [‘True|‘False]

end
module CoListOps =

Draft — May 23, 2006 8

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

struct
value append = fun ~l1 ~l2 ->

CoList.ind2t ~it:
match {l1; l2} with
unfold {l1; l2} ->
match CoList.tde ~it:l1 with
[‘Nil ->

match CoList.tde ~it:l2 with
[‘Nil -> ‘Nil
|‘Cons {head; tail} -> {head; tail = {l1; l2 = tail}} .‘Cons]

|‘Cons {head; tail} -> {head; tail = {l1 = tail; l2}} .‘Cons]
value is_nil = fun ~l ->

match CoList.tde ~it:l with
[‘Nil -> ‘True
|‘Cons -> ‘False]

end

Compare the code of append with the corresponding code in Charity [1]:

def coappend: colist(A) * colist(A) -> colist(A)
= (l1, l2) => (| (ff, ff) =>

delist: ff
| (ff, ss (a, l2’)) =>

delist: ss (a, (ff, delist l2’))
| (ss (a, l1’), l2’) =>

delist: ss (a, (delist l1’, l2’))
|)

(delist l1, delist l2).

Our code looks, arguably, somewhat more conventional, but less succinct. The conversions (three
in this case) do not seem to obscure the overall pattern of recursion, but they introduce three
additional lines of code. Simultaneous pattern-matching over both lists, as in the Charity code, is
not yet possible in Dule, so we use nested case expressions.

Coinductive natural numbers can be defined similarly as coinductive lists. The infinity value
represents the “infinite” natural number.

spec CoNat =
sig

type t
value ind2t : ~it:coind c: [‘Zero|‘Succ c] -> t
value tde : ~it:t -> [‘Zero|‘Succ t]
value zero : t
value succ : ~n:t -> t
value infinity : t

end
CoNat =
struct

type t = coind c: [‘Zero|‘Succ c]
value ind2t = fun ~it -> it
value tde = fun ~it -> it . unde
value zero = ‘Zero . uncon
value succ = fun ~n -> n .‘Succ . uncon
value infinity =

match {} with (* yes, {} suffices here *)
unfold u -> u .‘Succ

end

Draft — May 23, 2006 9

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

We can now define length of coinductive lists. Notice that infinite lists have infinite length (but the
computation terminates).

spec CoLength =
~CoList ~CoNat ->
sig

value length : ~l:CoList.t -> CoNat.t
end

module CoLength =
struct

value length = fun ~l ->
CoNat.ind2t ~it:

match l with
unfold l ->
match CoList.tde ~it:l with
[‘Nil -> ‘Zero
|‘Cons {head; tail} -> tail .‘Succ]

end

The separation of (co)inductive and sum types allows us to take a coinductive closure of
arbitrary types. The type of infinite lists (streams) below is a coinductive closure of a product
type (a type of records). Here operations head and tail seem more natural than tde, and we
stay with a conventionally looking cons instead of the inverse to tde, called tcon and typed
tcon : ~it:{head : Elem.t; tail : t} -> t. Conversion ind2t is still indispensable.

spec InfList =
~Elem:sig type t end ->
sig

type t
value ind2t : ~it:coind c: {head : Elem.t; tail : c} -> t
value head : ~it:t -> Elem.t
value tail : ~it:t -> t
value cons : ~head:Elem.t ~tail:t -> t

end
module InfList =
struct

type t = coind c: {head : Elem.t; tail : c}
value ind2t = fun ~it -> it
value head = fun ~it -> it . unde . head
value tail = fun ~it -> it . unde . tail
value cons = fun ~head ~tail -> {head; tail} . uncon

end

Infinite lists type has only infinite values, so they are all constructed with unfold and converted
with ind2t.

spec InfListOps =
~InfList ->
sig

value stutter : ~m:Elem.t -> InfList.t
value alternate : ~first:Elem.t ~second:Elem.t -> InfList.t

end
module InfListOps =
struct

value stutter = fun ~m ->
InfList.ind2t ~it:

match {} with

Draft — May 23, 2006 10

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

unfold u -> {head = m; tail = u}
value alternate = fun ~first ~second ->

InfList.ind2t ~it:
match ‘True with
unfold b ->
match b with
[‘True -> {head = first; tail = ‘False}
|‘False -> {head = second; tail = ‘True}]

end

Inductive and coinductive types can coexist peacefully. Here the structured recursion is performed
over an inductive natural number (hence the conversion Nat.t2ind) and on each pass an infinite
list is beheaded.

spec NthInfList =
~Nat ~InfList ->
sig

value nth : ~n:Nat.t ~l:InfList.t -> Elem.t
end

module NthInfList =
struct

value nth = fun ~n ~l ->
let nth_tail =

match Nat.t2ind ~it:n with
fold [‘Zero -> l

|‘Succ tl -> InfList.tail ~it:tl]
in InfList.head ~it:nth_tail

end

1.3. Polymorphism through polytypism

We have seen in Section 1.1.3 that capturing structured recursion mechanisms as ordinary
functions, such as foldf and foldr, eliminates the polytypic aspect (independence of datatype
structure) of structured recursion and requires polymorphism at the level of module specifications
to retain the polymorphic aspect (independence of the type of data stored in the datatype).
Fine-grained modularization favors monomorphic typing of operations (dependence on types is
captured explicitly through dependence on modules) so we want to demonstrate that our proposed
form of (co)inductive types and their exporting does not conflict with this programming style — we
would like to show that polytypism of our constructions is orthogonal to polymorphism. Moreover,
our examples will indicate that in the context of a monomorphic modular programming language,
such as Dule, the built-in polytypic structured recursion combinators behave in a polymorphic way,
though in a limited context. This limited form of polymorphism carries across module boundaries,
if only modules are equipped with suitable (co)inductive conversions. This time we see that the
inverse of t2ind conversion can be useful for inductive types, too.

1.3.1. Polymorphism in monomorphic core language

There is no polymorphism in our programming language Dule. Any dependency on types in Dule
is expressed modularly. This enforces better awareness of multiple type instantiations of entities
appearing in the program, usually making the interfaces narrower and proving polymorphism
unnecessary for this particular case. Another result can be the early elimination of potential bugs,
when the more strict module dependency mechanism explicitly imposes requirements on the
types to be used in instantiations. For example, if an ordering on a type is needed only in a
rarely used operation, other polymorphic operations of the same module can be successfully
applied to values without ordering, leading to a ground-up rewrite when the ordering is finally
found necessary.

Draft — May 23, 2006 11

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

However, the monomorphic nature of the language does not limit the generality of the built-in
polytypic structured recursion combinators. Consider the following two values, one of the type of
lists of natural numbers, the other of the type of lists of boolean values.

let intlist = {h = Nat.zero;
t = {h = Nat.succ ~n:Nat.zero;

t = ‘Nil . con} .‘Cons . con} .‘Cons . con
boollist = {h = ‘True;

t = {h = ‘False;
t = ‘Nil . con} .‘Cons . con} .‘Cons . con

In the same fragment of code we can use the built-in structured recursion combinators for
datatypes not only with different structure, but also with different types of data. This is illustrated
with by the three uses of fold below.

in
let lenght_of_intlist = match intlist with

fold [‘Nil -> Nat.zero
|‘Cons {h; t} -> Nat.succ ~n:t]

lenght_of_boollist = match boollist with
fold [‘Nil -> Nat.zero

|‘Cons {h; t} -> Nat.succ ~n:t]
add = fun ~n ~it ->

match Nat.t2ind ~it with
fold [‘Zero -> n

|‘Succ m -> Nat.succ ~n:m]
in
add ~n:lenght_of_intlist ~it:lenght_of_boollist

This recovery of polymorphism through polytypism, its limitations and interaction with a module
system, are better illustrated with our built-in combinator map. After introducing the combinator we
will return to examples.

1.3.2. Mapping

The keyword map signals the operation of traversing a complex value, applying the given function
to sub-values on the way. This is a very broad generalization of the mapping function for lists,
well known in functional programming. The mapping function for lists, operating with a function
f may be recast in Dule as simply map f. In the following example we obtain a two-element list
containing the falsity value and the truth value.

let list_map = fun ~f ~l ->
match l with
map f

in
let l = {h = ‘True;

t = {h = ‘False;
t = ‘Nil . con} .‘Cons . con} .‘Cons . con

in
list_map ~l ~f:[‘True -> ‘False

|‘False -> ‘True]

The combinator map operates with functions with parameters labeled it. Any case analysis
expression is such a function, hence the application of list_map is type-correct.

A mapping on binary trees operating with a function f is written in the same way: map f. In the
following example we construct a tree and then apply the mapping combinator, obtaining a tree
with a single value ‘True. Function Nat.is_zero accepts its arguments at label it, just as map

Draft — May 23, 2006 12

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

requires.

let tree_map = fun ~f ~t ->
match t with
map f

in
let t = {valu = Nat.zero;

left = ‘Empty . con;
right = ‘Empty . con} .‘Node . con

in
tree_map ~f:Nat.is_zero ~t

Notice that list_map and tree_map have the same code — map is a polytypic combinator.

One can map not only over values of inductive types, but over a value of every type (except, in
general, a function type — the details are out of scope of this paper). Below we define a function
negating every value on a coinductive stream (an infinite list, see Section 1.2.3). Then the function
is tested and the resulting stream is destructed to obtain its first element, which turns out to be
‘True.

let negate_stream = map [‘True -> ‘False
|‘False -> ‘True]

falsities = match {} with
unfold tail -> {head = ‘False; tail}

in
let truths = negate_stream ~it:falsities in
truths . unde . head

The expression below checks and notes whether a natural number is zero, for every natural
number value contained in the record:

match {b = ‘False; n = Nat.zero;
r = {rn = Nat.succ ~n:Nat.zero; ro = ‘OK}} with

map Nat.is_zero

The result will be a similar record but with ‘True in place of Nat.zero and ‘False in place of
Nat.succ ~n:Nat.zero. The type-checker will reconstruct such a type for the map combinator
so that the application of the combinator will retain the old values at the b and ro fields of
the record. In the following example we increment three natural numbers. We write numbers in
decimal notation, with the use of a syntactic sugar and create the functional argument to map on
the spot, with another sugared notation, the same that was used for unfold before.

let incr =
(map n -> Nat.succ ~n)

in
{n1n2 = incr ~it:({n1 = 5; n2 = 7; b = ‘True} .‘Two);
n = incr ~it:(13 .‘One)}

In the resulting record there will be numbers 6, 8 and 14, respectively.

The astute reader may ask “what if I want only one of the numbers n1, n2 above to be incremented
or, in another application, only attributes of an AVL tree, and not its elements?”. This could be
answered by providing an additional syntax for directing the type reconstruction for mappings
more precisely. Instead we suggest that the desired functions be written by hand, using case
analysis, iteration, etc. Some remarks about how typing determines sub-values to be changed
and a discussion of the lack of principal typing for mapping is provided in Section 2.4.

Draft — May 23, 2006 13

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

1.3.3. Polymorphism with mapping

Let us revisit our lists of integers and of boolean values, this time using the polytypic combinator
map to operate over the lists in a polymorphic fashion.

let intlist = {h = 0;
t = {h = 1;

t = ‘Nil . con} .‘Cons . con} .‘Cons . con
boollist = {h = ‘True;

t = {h = ‘False;
t = ‘Nil . con} .‘Cons . con} .‘Cons . con

monomorphic_map =
map fun ~it -> {x = it; y = it}

in
{intmap =

match intlist with
map fun ~it -> {x = it; y = it}

;boolmap =
match boollist with
map fun ~it -> {x = it; y = it}

;intmap2 =
match intlist with
monomorphic_map

(* this would be incorrect:
;boolmap2 =

match boollist with
monomorphic_map *)

}

If map was not polymorphic, through its inherent polytypism, different versions would have to
be used for integer lists and boolean lists. Note, however, that as soon as the combinator is
named as a language value (as with monomorphic_map above) it becomes monomorphic. In our
monomorphic programming language the exact monomorphic type is not determined until a value
is used (as monomorphic_map under intmap2 above), but any use fixes the type. Consequently,
two different uses of the named mapping can lead to inconsistent typings, as would be the case
with boolmap2 in the example above.

Unfortunately, not only map has its type fixed upon being named — this is also the case with
arguments to map, so that boolmap in the following piece of code may be incorrect, similarly as
boolmap2 in the example above.

let monomorphic_delta =
fun ~it -> {x = it; y = it}

in
(* if [intmap] and [boolmap] are lists of records then here typing fails *)
{intmap =

match intlist with
map monomorphic_delta

;boolmap =
match boollist with
map monomorphic_delta

}

This implies that there is not way to avoid spurious copying of code, when using a polytypic
combinator with the same argument in a polymorphic way. However, as long as a combinator is
used in a polytypic, but monomorphic way, as in the following example, no copying of argument
code is necessary.

Draft — May 23, 2006 14

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

let intlist = {h = 0;
t = {h = 1;

t = ‘Nil . con} .‘Cons . con} .‘Cons . con
inttree = {valu = 5;

left = ‘Empty . con;
right = ‘Empty . con} .‘Node . con

monomorphic_delta =
fun ~it -> {x = it; y = it}

in
{listmap =

match intlist with
map monomorphic_delta

;treemap =
match inttree with
map monomorphic_delta}

Concluding, Dule built-in polytypic combinators behave in a polymorphic way, but they arguments
do not, so if the arguments are large and similar, but differently typed, the polymorphic code-reuse
fails and modules have to be used.

1.3.4. Polymorphism through monomorphic modules

Recall our specification of a module of lists with elements of type Elem.t. We enrich the
specification by requiring module Elem to provide an action on type Elem.t. We also add a
conversion ind2t, the inverse of t2ind, to the specification of lists.

spec List =
~Elem:sig

type t
value action : ~it:t -> t

end ->
sig

type t
value t2ind : ~it:t -> ind list: [‘Nil|‘Cons {head : Elem.t; tail : list}]
value ind2t : ~it:ind list: [‘Nil|‘Cons {head : Elem.t; tail : list}] -> t
value nil : t
value cons : ~head:Elem.t ~tail:t -> t

end

In the context of this specification we can reconstruct the behavior of map from the previous
examples, where it was used independently of the type of data stored in lists — in a polymorphic
way. As an example we implement function traverse, that applies Elem.action to each element
of a list. The code of the function is independent of the type Elem.t, due to the generality of map.

spec MapAction =
~List ->
sig

value traverse : ~it:List.t -> List.t
end

module MapAction =
struct

value traverse = fun ~it ->
List.ind2t ~it:

match List.t2ind ~it with
map Elem.action

end

Draft — May 23, 2006 15

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

Without the use of List.ind2t the code would be incorrect, because the result of map is
an inductive type, not an abstract type, as specification of traverse requires. Inside module
MapAction the two types are not equal, even if List.t is indeed implemented as an inductive
type. The conversion List.ind2t can be, in simplest cases, implemented as an identity, just
as List.t2ind. If the List.ind2t conversion was not provided in List, it would have to be
substituted by a use of fold, as in the following alternative implementation of traverse. A
complete fold expression is function with arguments at it (just as a case expression, an unfold
expression and a mapping expression), hence the application at label it.

value traverse = fun ~it ->
(fold [‘Nil -> List.nil

|‘Cons {head; tail} -> List.cons ~head ~tail])
~it:

match List.t2ind ~it with
map Elem.action

Conversion List.ind2t is always expected to give the same results as a fold expression
analogous to the one above, even if the abstract type is not implemented as the inductive type
from the typing of List.ind2t.

1.4. Summary

1.4.1. Four conversions

We have demonstrated the use of anonymous inductive and coinductive types separated from
sum and product types, their related built-in combinators and four conversion operations t2ind,
ind2t, tde, tcon. The conversion operations for standard lists are typed as in the following
specification. After the specification we also present the implementation in the simplest case —
where the abstract type is implemented just as the inductive type seen in the typing of operations.

spec List4 =
~Elem:sig type t end ->
sig

type t
value t2ind : ~it:t -> ind list: [‘Nil|‘Cons {head : Elem.t; tail : list}]
value ind2t : ~it:ind list: [‘Nil|‘Cons {head : Elem.t; tail : list}] -> t
value tde : ~it:t -> [‘Nil|‘Cons {head : Elem.t; tail : t}]
value tcon : ~it:[‘Nil|‘Cons {head : Elem.t; tail : t}] -> t

end
module List4 =
struct

type t = ind list: [‘Nil|‘Cons {head : Elem.t; tail : list}]
value t2ind = fun ~it -> it
value ind2t = fun ~it -> it
value tde = fun ~it -> it . de
value tcon = fun ~it -> it . con

end

In our earlier specification of lists, instead of tcon we have provided the more convenient
constructor operations nil and cons. Conversion tcon can be recovered from them in the
following way.

value tcon = fun ~it ->
match it with

[‘Nil -> List.nil
|‘Cons {head; tail} -> List.cons ~head ~tail]

Draft — May 23, 2006 16

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

For infinite lists — streams implemented earlier in module InfList — we have the following
typing of the four conversions. Notice that the simplest implementation of operations is completely
analogous to that for standard lists.

spec InfList4 =
~Elem:sig type t end ->
sig

type t
value t2ind : ~it:t -> coind c: {head : Elem.t; tail : c}
value ind2t : ~it:coind c: {head : Elem.t; tail : c} -> t
value tde : ~it:t -> {head : Elem.t; tail : t}
value tcon : ~it:{head : Elem.t; tail : t} -> t

end
module InfList4 =
struct

type t = coind c: {head : Elem.t; tail : c}
value t2ind = fun ~it -> it
value ind2t = fun ~it -> it
value tde = fun ~it -> it . unde
value tcon = fun ~it -> it . uncon

end

The constructor of our earlier implementation of streams is almost identical to tcon.

value tcon = fun ~it:{head; tail} -> InfList.cons ~head ~tail

The destructors are also close to tde.

value tde = fun ~it -> {head = InfList.head ~it; tail = InfList.tail ~it}

1.4.2. Two conversions suffice

We have argued that for inductive types, the most important operations are t2ind and tcon, while
for coinductive types they are ind2t and tde. We have also indicated some of the cases, where
the remaining two operations are useful. Both pairs of operations are enough to express all four
but, especially in case of straightforward implementation of the abstract type, this can be relatively
costly.

In case of standard lists, when we have t2ind and tcon we can express ind2t in the following
way, already used in an alternative implementation of traverse in the previous section (remember
that a fold expression is a function).

value ind2t =
fold [‘Nil -> List.nil

|‘Cons {head; tail} -> List.cons ~head ~tail]

This is equivalent to

value ind2t =
fold [‘Nil -> tcon ~it:‘Nil

|‘Cons ht -> tcon ~it:ht .‘Cons]

which is equivalent to

value ind2t = fold tcon

We can reconstruct tde in the following way.

value tde = fun ~it ->

Draft — May 23, 2006 17

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

match t2ind ~it with
fold [‘Nil -> ‘Nil

|‘Cons {head; tail} ->
{head; tail =tcon ~it:tail} .‘Cons]

And this is equivalent to

value tde = fun ~it ->
match t2ind ~it with
fold map tcon

Notice that we have managed to express the two remaining operations in a polytypic way —
without mentioning the type structure of lists. In case of coinductive types with conversions ind2t
and tde the construction is dual, as follows.

value t2ind = unfold tde

value tcon = fun ~it ->
ind2t ~it:

match it with
unfold map tde

Fact 1.1. In the simplest case, where the implementation of an abstract type coincides with the
(co)inductive type of its specification, t2ind and tcon for inductive types and ind2t and tde for
coinductive types suffice to express all four conversion operations, so that they have the same
semantics as in the straightforward implementation.

Proof. Diagram chasing using the semantics described in Section 2.

It is easy to see that to reconstruct the four conversions using structured recursion one needs
t2ind with either ind2t or tcon, for inductive types, and ind2t with t2ind or tde, for coinductive
types. With general recursion any pair with different domains and codomains suffices.

2. SEMANTICS AND TYPING

2.1. Semantics

A strict account of the syntax, typing and semantics of our programming language Dule, together
with a discussion of variants and proofs of properties is given in [9]. The mathematical model of
the core language of Dule is an (almost) 2-category [5] with products and some other additional
structure. The category is not strictly a 2-category because the interchange law not always holds.
However, a programmer, as well as, for the most part, a designer of a module system can safely
regard the underlying model as a 2-category, or even just Cat — the category of all (small)
categories. Objects of the 2-category model kinds of the programming language, 1-morphisms
model types and 2-morphisms model values. The kind of ordinary types can be though of as the
object Set in Cat — the category of sets and functions. Then types become sets and values
are functions. To avoid the compilations of variance analysis we declare undefined any mapping
combinators and (co)inductive operations involving types where “recursion” goes through the
exponent construction. Fortunately inductive types with the induction parameter nested inside
a function type are not very common in programming practice.

As is customary for categories, the typing of our core language assigns to a value not
only the codomain type but also the domain type. The domain type models the types of
values in the environment. In this setting we model value variables as projections in the
category. The composition of values written with a dot in the programming language is
modelled as the vertical composition of 2-morphisms in the category. Sum type constructors are

Draft — May 23, 2006 18

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

coproduct injections, inductive type constructors are constructor morphisms of initial algebras,
etc. There is a lot of substitution notation in the typing rules for Dule values. For example,
g[h/i] denotes instantiation of type g with type h in place of the type variable i. If g =
[‘Nil|‘Cons {head : Elem.t; tail : list}], then the inductive type of lists is equal to
ind list:g and g[List.t/list] is exactly the codomain type of the conversion tde. However,
there is no syntactic substitution in our language. The composition in the underlying category
faithfully and semantically implements the type substitution or, in other words, the language of
types is referentially transparent.

2.2. Syntactic sugar

We design a uniform way of supplying operands to coproduct, (co)inductive and mapping
combinators. Arguments to combinators in all of the rules (5), (6), (8) and (11) below are typed in
the same way: as functions with one of the parameters called it. The results of the combinators
are also typed in this way so that using the results of nested combinators as arguments to others
is easy. Consequently the most frequently occurring kind of application in Dule is that with a
single label it. For these cases there is an additional syntactic form for application, written using
keywords match and with, which denotes an application of a single argument at label it. For
example

(unfold it -> ‘True) ~it:5

is equivalent to

match 5 with (unfold fun ~it -> ‘True)

The syntax is especially handy for delimiting large arguments, as in the example below.

match (Nat.pred ~n:(Nat.add ~n:1 ~it:2)) . de with
[‘Zero -> ‘True
|‘Succ -> ‘False]

Longer and more realistic examples can be found throughout the paper.

2.3. Typing rules

The Dule core language is strongly and statically typed. We will denote the typings by “ . ” not by
“ : ” to avoid confusion with the colons of the language constructions. For brevity we will omit the
rules assigning kinds to types and present only some of the rules for derivation of domain and
codomain types of values.

t . f → g u . g → h

t . u . f → h
(1)

i . {i : f; . . . }→ f
(2)

t1 . f → h1 · · · tn . f → hn

{i1 = t1; . . . ; in = tn} . f → {i1 : h1; . . . ; in : hn}
(3)

‘i . f → [‘i f| . . .]
(4)

Draft — May 23, 2006 19

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

t1 . f → ~it:f1 ~j1:g1 . . . ~jn:gn -> h
t2 . f → ~it:f2 ~j1:g1 . . . ~jn:gn -> h

...
[‘i1 t1|‘i2 t2| . . .] . f →

~it:[‘i1 f1|‘i2 f2| . . .] ~j1:g1 . . . ~jn:gn -> h

(5)

t . f → ~it:g′ ~j1:g1 . . . ~jn:gn -> h

map t . f → ~it:g[g′/i] ~j1:g1 . . . ~jn:gn -> g[h/i]
(6)

con . g[ind i: g/i] → ind i: g
(7)

t . f → ~it:g[h/i] ~j1:g1 . . . ~jn:gn -> h

fold t . f → ~it:(ind i: g) ~j1:g1 . . . ~jn:gn -> h
(8)

de . ind i: g → g[ind i: g/i]
(9)

uncon . g[coind i: g/i] → coind i: g
(10)

t . f → ~it:h ~j1:g1 . . . ~jn:gn -> g[h/i]
unfold t . f → ~it:h ~j1:g1 . . . ~jn:gn -> coind i: g

(11)

unde . coind i: g → g[coind i: g/i]
(12)

2.4. Properties

The reconstruction of domain and codomain types of a given value is very difficult. A portion of the
difficulty comes from the complicated two-part unification procedure, reflecting the additional way
a type may be more general than the other — by having less component in some of the indexed
lists of its arguments. Another difficulty comes from the absence of a fixed “environment”. Still
another complication comes from the polytypic combinators and their interaction with unification of
indexed lists. The most problematic combinator seems to be the mapping combinator, as captured
by rule (6), where type g is hard to guess on the basis of its two occurrences with substituted
subterms (in particular if the subterms are not proper!). The definition of generality of typing that
seems closest to the similar definitions for conventional type systems is the following.

Definition 2.1. An indexed list of types lf is said to be less or equally detailed than lg, if for each
element f of lf at index k, the element k of lg exists and is less or equally detailed than f . A type
term f is less or equally detailed than g if the semantics of f and g are equal or f is the empty
product type {} or f and g have the same root constructor and the corresponding type or type list
subterms of f are less or equally detailed than the corresponding subterms of g.

Draft — May 23, 2006 20

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

Fact 2.1. There are typable values that have no least detailed elements in their sets of derivable
domains nor in their sets of derivable codomains. For example the term

(map fun ~(it:[‘A]) -> ‘B) ~it:‘A

can have both [‘A] and [‘B] as its codomain, but cannot have {} (their only lower bound).

Our type-reconstruction algorithm finds a minimally detailed typing for a given value. Choosing
which of the minimally detailed typings are to be generated by the compiler will be an interesting
research topic, most probably involving case studies. We believe that with a good choice of
typing defaults in the compiler, the programmer will very rarely have to direct type-reconstruction
by explicit typing, especially that our language encourages fine-grained modularization, already
providing numerous typing hints.

The typing and semantics of Dule enjoys the following soundness properties.

Fact 2.2. The typing of values is compatible with domains and codomains of their semantics in
the category.

Fact 2.3. The inferred type of every value is expressible, moreover expressible an anonymous
(closed) type expression.

Fact 2.4. The language of Dule values is referentially transparent with respect to value projections
(programming language value variables).

3. CONCLUSION AND FUTURE WORK

3.1. Conclusion

W have proposed language constructs that allow polytypic combinators to be used across abstract
module boundaries. The constructs are the anonymous inductive and coinductive types together
with their accompanying combinators that are used both to export conversion operations in
module interfaces and to perform structured recursion over abstract types. In addition to being
anonymous, our (co)inductive types are also separated from sum and product types, which
facilitates a stricter typing of conversion operations. The constructs are parts of an implemented
modular programming language Dule, but their analogues can be found in other languages.
The described modular programming discipline can be useful, for some applications, even in
languages with no polytypic operations.

Here is a summary of advantages and drawbacks of our approach, as discussed in the paper.

Advantages:

• absolute abstraction
• but for a particular implementation of a datatype, one can optimize both the code of the

conversions and the choice of conversion to be used
• in the simplest case, full power, as if there was no modules; but also the ability to exchange

implementations
• pattern matching
• types of conversions indicate if a datatype is meant for structured or general recursion and

provide some safety against erroneous usage; the set of conversions may be different in
different specifications of the same module

• very explicit but relatively concise notation for programmers; separation of (co)inductive,
sum and product types eliminates dummy injections and projections

Draft — May 23, 2006 21

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

• admits full polytypism with at most four conversions, regardless of the number of polytypic
combinators that are to operate on the datatype

• does not require type abbreviations and polymorphism in module specifications
• polytypism of combinators is orthogonal to polymorphism; no polymorphism required at

the core language level and, to an extent, the polymorphism can be simulated through
polytypism

• simple semantics of types and uniform typing of combinators
• experiments with this modular programming style in OCaml confirm its usefulness for

grammar datatypes with additional structure, such as stamps for hash-consing or source
code locations

Drawbacks:

• verbose and exotic
• the “simplest implementation is the best specification” approach is not always valid
• for a single datatype only inductive combinators allowed or only coinductive combinators;

hence restricted patterns of structured recursion
• no principal typing for map
• experiments in OCaml reveal that nested pattern matching (Cons(Zero, Nil) -> ...) is

not possible and the resulting nested conversions tde are unreadable

3.2. Future work

Our constructs have much in common with views [15], designed to facilitate pattern matching in
the presence of abstract types at the core language level. Anonymous (co)inductive types are
more general in that they enable not only pattern matching, but also structured recursion. Views
are more general in that they not always choose the simplest specification (view) of a datatype,
admitting many useful views of a single implementation, instead of our many implementations of a
single canonical specification. We expect our canonical implementation with its four conversions
to be convenient for defining other views as modules with the canonical specification as their
domain. Here is a sketch of a module corresponding to a view from [15].

spec NatEvenOdd =
~Nat ->
sig

value t2view : ~it:Nat.t -> ind t: [‘Zero|‘Even t|‘Odd t]
value view2t : ~it:ind t: [‘Zero|‘Even t|‘Odd t] -> Nat.t

end
NatEvenOdd =
struct

value t2view = fun ~it ->
match Nat.t2ind ~it with ...

value view2t =
fold [‘Zero -> Nat.zero

|‘Even n -> Nat.mult ~n ~it:2
|‘Odd n -> Nat.add ~n:(Nat.mult ~n ~it:2) ~it:1]

end

The modular notation with a light-weight module system should not be much more burdensome
than the views notation, at the same time providing systematization and even greater abstraction.
More experiments are needed.

An interesting concept and methodology is the merger of operations of algebras and co-algebras
sharing the same carrier [2]. A generalization of a variant of this concept is already expressible
in Dule by defining a co-algebra inside a module and providing both co-algebraic and algebraic
conversion operations for the carrier. For example we could provide the following operations for
lists.

Draft — May 23, 2006 22

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

spec BothList =
~Elem:sig type t end ->
sig

type t
value t2ind : ~it:t -> ind list: [‘Nil|‘Cons {head : Elem.t; tail : list}]
value ind2t : ~it:coind c: [‘Nil|‘Cons {head : Elem.t; tail : c}] -> t
value tde : ~it:t -> [‘Nil|‘Cons {head : Elem.t; tail : t}]
value nil : t
value cons : ~head:Elem.t ~tail:t -> t

end

Unfortunately, here the implementation of t2ind is complex, costly and not always terminating.
Experiments are needed to find out in which cases such programming discipline is practical and
if we should extend the language and categorical model in order to increase the usability and
efficiency of compilation for this construction. Even if the underlying implementation is eventually
reduced to recursive types, this is still safer than PolyP, because the type conversions are explicit
and so a single abstract value has a single type.

The unwrap operation of two-level types [14] directly corresponds to our conversion tde, though
similarly as in PolyP, the lack of separation between inductive and sum types in the underlying
Haskell type system results in a sum-inductive type with void closure and a dummy constructor.
However, the sum-type level of two-level types is not the same as the sum type in the codomain
of tde — it is a parameterized type. Consequently, in Dule it can only be expressed with a module
parameterized by type — and such modules are a companion topic to two-level types, appearing
together in example applications [14]. In Dule it is possible to inductively close such a module,
and even more, we can close a set of mutually dependent modules that depend not only on
types, but on each other. It would be interesting to recast two-level types’ examples in Dule and
see if the dependency on whole specifications, instead of types, affords any improvements in
modularization and if the modular and (co)inductive notation scales for such levels of abstraction
as demonstrated with the two-level types methodology.

REFERENCES

[1] Robin Cockett. Charitable Thoughts, 1996. (draft lecture notes, http://pll.cpsc.
ucalgary.ca/charity1/www/home.html).

[2] Martin Erwig. Categorical programming with abstract data types. In Armando Martin
Haeberer, editor, AMAST, volume 1548 of Lecture Notes in Computer Science, pages 406–
421. Springer, 1998.

[3] Tom Fukushima and Charles Tuckey. Charity User Manual, January 1996. (draft, http:
//pll.cpsc.ucalgary.ca/charity1/www/home.html).

[4] P. Jansson and J. Jeuring. PolyP — a polytypic programming language extension. In
POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 470–482. ACM Press, 1997.

[5] C. B. Jay. An introduction to categories in computing. Technical Report UTS-SOCS-93.9,
University of Technology, Sydney, 1993.

[6] C. B. Jay, G. Bellè, and E. Moggi. Functorial ML. Journal of Functional Programming,
8(6):573–619, 1998.

[7] Johan Jeuring and Patrik Jansson. Polytypic Programming. In J. Launchbury, E. Meijer, and
T. Sheard, editors, Tutorial Text from 2nd Int. School on Advanced Functional Programming,
Olympia, WA, USA, 26–30 Aug 1996, volume 1129 of Lecture Notes in Computer Science,
pages 68–114. Springer-Verlag, Berlin, 1996.

[8] Mikołaj Konarski. Source code of the Dule compiler. http://www.mimuw.edu.pl/∼mikon/
Dule/dule-phd, 2005.

[9] Mikołaj Konarski. Application of category-theory methods to the design of a system of
modules for a functional programming language. http://www.mimuw.edu.pl/∼mikon/Dule/
download/phd-thesis/dule.pdf, 2006.

Draft — May 23, 2006 23

http://pll.cpsc.ucalgary.ca/charity1/www/home.html�
http://pll.cpsc.ucalgary.ca/charity1/www/home.html�
http://pll.cpsc.ucalgary.ca/charity1/www/home.html�
http://pll.cpsc.ucalgary.ca/charity1/www/home.html�
http://www.mimuw.edu.pl/~mikon/Dule/dule-phd�
http://www.mimuw.edu.pl/~mikon/Dule/dule-phd�
http://www.mimuw.edu.pl/~mikon/Dule/download/phd-thesis/dule.pdf�
http://www.mimuw.edu.pl/~mikon/Dule/download/phd-thesis/dule.pdf�

Anonymous (co)inductive types: A way for structured recursion to cohabit with modular abstraction

[10] Xavier Leroy. The Objective Caml system: Documentation and user’s manual, 2000. With
Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. Available from
http://caml.inria.fr.

[11] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press,
Cambridge, MA, 1989.

[12] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard
ML (Revised). The MIT Press, 1997.

[13] Simon Peyton Jones. Special issue: Haskell 98 language and libraries. Journal of Functional
Programming, 13, January 2003.

[14] Tim Sheard and Emir Pasalic. Two-level types and parameterized modules. J. Funct.
Program, 14(5):547–587, 2004.

[15] Philip Wadler. Views: A way for pattern matching to cohabit with data abstraction. In Steve
Munchnik, editor, Proceedings, 14th Symposium on Principles of Programming Languages,
pages 307–312. Association for Computing Machinery, 1987.

Draft — May 23, 2006 24

http://caml.inria.fr�

